Browse > Article
http://dx.doi.org/10.4283/JKMS.2012.22.5.162

Electrical Characteristics of Magnetic Tunnel Junctions with Different Cu-Phthalocyanine Barrier Thicknesses  

Bae, Yu-Jeong (Department of Physics, Ewha Womans University)
Lee, Nyun-Jong (Department of Physics, Ewha Womans University)
Kim, Tae-Hee (Department of Physics, Ewha Womans University)
Abstract
V-I characteristics of Fe(100)/MgO(100)/Cu-phthalocyanine (CuPc)/Co hybrid magnetic tunnel junctions were investigated at different temperatures. Fe(100) and Co ferromagnetic layers were separated by an organic-inorganic hybrid barrier consisting of different thickness of CuPc thin film grown on a 2 nm thick epitaxial MgO(100) layer. As the CuPc thickness increases from 0 to 10 nm, a bistable switching behavior due to strong charging effects was observed, while a very large magenetoresistance was shown at 77 K for the junctions without the CuPc barrier. This switching behavior decreases with the increase in temperature, and finally disappears beyond 240 K. In this work, high-potential future applications of the MgO(100)/CuPc bilayer were discussed for hybrid spintronic devices as well as polymer random access memories (PoRAMs).
Keywords
organic-inorganic hybrid structure; PoRAM; spintronic devices; charge transport phenomena;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Al-Sharmery, H.-G. Rubahn, and H. Sitter, Eds., Organic Nanosturctures for Next Generation Devices, Springer, Berlin (2007) pp. 263-345.
2 F. Sawano, I. Terasaki, H. Mori, T. Mori, M. Watanabe, N. Ikeda, Y. Nogami, and Y. Noda, Nature 437, 522 (2005).   DOI   ScienceOn
3 Y.-S. Lai, C.-H. Tu, and D.-L. Kwong, Appl. Phys. Lett. 87, 122101 (2005).   DOI   ScienceOn
4 V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani, Nature Mater. 8, 707 (2009).   DOI   ScienceOn
5 Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature 427, 821 (2004).   DOI   ScienceOn
6 J.-W. Yoo, C.-Y. Chen, H. W. Jang, C. W. Bark, V. N. Prigodin, C. B. Eom, and A. J. Epstein, Nature Mater. 9, 638 (2010).   DOI   ScienceOn
7 W. J. M. Naber, S. Faez, and W. G. van der Wiel, J. Phys. D 40, R205 (2007).
8 Y. Q. Zhan, X. J. Liu, E. Carlegrim, F. H. Li, I. Bergenti, P. Graziosi, V. Dediu, and M. Fahlman, Appl. Phys. Lett. 94, 053301 (2009).   DOI   ScienceOn
9 H. W. Choi, S. Y. Kim, W. Kim, H. Hong, and J. Lee, J. Appl. Phys. 100, 064106 (2006).   DOI   ScienceOn
10 I. Bergenti, V. Dediu, E. Arisi, T. Mertelj, M. Murgia, A. Riminucci, G. Ruani, M. Solzi, and C. Talian, Org. Electron. 5, 309 (2004).   DOI   ScienceOn
11 S. Yuasa, T. Nagaham, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868, (2004); W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. Maclaren, Phys. Rev. B 63, 054416 (2001).   DOI
12 Y. J. Bae, N. J. Lee, T. H. Kim, H. Cho, C. Lee, L. Fleet, and A. Hirohata, submitted to Nanoscale Research Letters (2012).