Browse > Article
http://dx.doi.org/10.5757/ASCT.2016.25.4.73

Enhanced Anti-reflective Effect of SiNx/SiOx/InSnO Multi-layers using Plasma Enhanced Chemical Vapor Deposition System with Hybrid Plasma Source  

Choi, Min-Jun (Division of Physics and Semiconductor Science, Dongguk University)
Kwon, O Dae (R&D Center, SNTEK Co.)
Choi, Sang Dae (R&D Center, SNTEK Co.)
Baek, Ju-Yeoul (R&D Center, SNTEK Co.)
An, Kyoung-Joon (R&D Center, SNTEK Co.)
Chung, Kwun-Bum (Division of Physics and Semiconductor Science, Dongguk University)
Publication Information
Applied Science and Convergence Technology / v.25, no.4, 2016 , pp. 73-76 More about this Journal
Abstract
Multi-layer films of $SiN_x/SiO_x$/InSnO with anti-reflective effect were grown by new-concept plasma enhanced chemical vapor deposition system (PECVD) with hybrid plasma source (HPS). Anti-reflective effect of $SiN_x/SiO_x$/InSnO was investigated as a function of ratio of $SiN_x$ and $SiO_x$ thickness. Multi-layers deposited by PECVD with HPS represents the enhancement of anti-reflective effect with high transmittance, comparing to the layers by conventional radio frequency (RF) sputtering system. This change is strongly related to the optical and physical properties of each layer, such as refractive index, composition, film density, and surface roughness depending on the deposition system.
Keywords
Anti-reflective effect; Plasma enhanced chemical vapor deposition (PECVD); RF sputtering; Optical property; Physical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Hiller, J.D. Mendelsohn, and M. F. Rubner, Nat. Mater. 1, 59 (2002).   DOI
2 A. Alemu, A. Freundlich, N. Badi, C. Boney, and A. Bensaoula, Sol. Energ. Mat. Sol. Cells 94(5), 921 (2010).   DOI
3 K. Askar, B. M. Phillips, Y. Fang, B. Choi, N. Gozubenli, P. Jiang, B. Jiang, Colloids and Surfaces A: Physicochem. Eng. Aspects 439, 84 (2013).   DOI
4 M. Nag, A. Bhoolokam, S. Steudel, J. Genoe, G. Groeseneken, and P. Heremans, ECS J. Solid State Sci. Technol. 4(8), N99 (2015).   DOI
5 Hemant Kumar Raut, V. Anand Ganesh, and A. Sreekumaran Nair, Seeram Ramakrishna, Energy Environ. Sci. 4, 3779 (2011).   DOI
6 M. Barrera, J Pla, C Bocchi, and A Migliori, Sol. Energ. Mat. Sol. Cells 92, 1115 (2008).   DOI
7 G. Zhang, J. Zhao, and M. A. Green, Sol. Energ. Mat. Sol. Cells 51, 393 (1998).   DOI
8 S. Muramatsu, T. Uetmatsu, H. Ohtsuka, Y Yazawa, T. Warabisako, H. Nagayoshi, and K. Kamisako, Sol. Energ. Mat. Sol. Cells 65, 599 (2001).   DOI
9 Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, Nature 2, 770 (2007).
10 Z. Chen, P. Sana, J. Salami, and A. Rohatgi, IEEE Trans. Electron Devices 40(6), 1161, (1993).   DOI
11 K. E. Mattsson, J. Appl. Phys. 77(12), 6616 (1995).   DOI
12 D. K. Kim and H. B. Kim, J. Kor. Vac. Soc. 22(5), 257 (2013).   DOI