• Title/Summary/Keyword: Homeostasis

Search Result 1,272, Processing Time 0.035 seconds

Zinc and Its Transporters in Epigenetics

  • Brito, Sofia;Lee, Mi-Gi;Bin, Bum-Ho;Lee, Jong-Soo
    • Molecules and Cells
    • /
    • v.43 no.4
    • /
    • pp.323-330
    • /
    • 2020
  • Epigenetic events like DNA methylation and histone modification can alter heritable phenotypes. Zinc is required for the activity of various epigenetic enzymes, such as DNA methyltransferases (DNMTs), histone acetyltransferases (HATs), histone deacetylases (HDACs), and histone demethylases, which possess several zinc binding sites. Thus, the dysregulation of zinc homeostasis can lead to epigenetic alterations. Zinc homeostasis is regulated by Zinc Transporters (ZnTs), Zrt- and Irt-like proteins (ZIPs), and the zinc storage protein metallothionein (MT). Recent advances revealed that ZIPs modulate epigenetics. ZIP10 deficiency was found to result in reduced HATs, confirming its involvement in histone acetylation for rigid skin barrier formation. ZIP13 deficiency, which is associated with Spondylocheirodysplastic Ehlers-Danlos syndrome (SCD-EDS), increases DNMT activity, leading to dysgenesis of dermis via improper gene expressions. However, the precise molecular mechanisms remain to be elucidated. Future molecular studies investigating the involvement of zinc and its transporters in epigenetics are warranted.

Calcium Sensing Receptor Modulation for Cancer Therapy

  • Sarkar, Puja;Kumar, Sudhir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.8
    • /
    • pp.3561-3568
    • /
    • 2012
  • The calcium sensing receptor (CaSR) is a member of the largest family of cell surface receptors, the G protein-coupled receptors involved in calcium homeostasis. The role of the CaSR in neoplasia appears to be homeostatic; loss of normal CaSR-induced response to extracellular calcium is observed in cancers of the colon and ovary, while increased release of PTHrP is observed in cancers of the breast, prostate and Leydig cells. Currently CaSR can be considered as a molecule that can either promote or prevent tumor growth depending on the type of cancer. Therefore, recognition of the multifaceted role of CaSR in gliomas and other malignant tumors in general is fundamental to elucidating the mechanisms of tumor progression and the development of novel therapeutic agents. Emphasis should be placed on development of drug-targeting methods to modulate CaSR activity in cancer cells.

Natural Products Targeting Wnt/β-catenin Signaling Pathway

  • Kim, Donghwa;Lee, Sang Kook
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • The canonical Wnt/β-catenin signaling pathways play an important role in the embryonic development, cell proliferation, differentiation, and adhesion. Therefore, the abnormal activation and repression have been associated with uncontrolled homeostasis in human tissues. In particular, the activation of Wnt signaling is highly correlated with a diverse of diseases including cancer. On this regard, a strategy for targeting Wnt/β-catenin signaling has been employed in the discovery and development of antitumor agents. Herein, the evolution of Wnt signaling and the Wnt inhibitors derived from natural products were briefly summarized in the drug discovery of anticancer agents.

Presenilin-2 mutation perturbs ryanodine receptor-mediated calcium homeostasis, caspase-3 activation and increases vulnerability of PC12 cells

  • Hwang, In-Young;Shin, Im-Chul;Hwang, Dae-Youn;Kim, Young-Kyu;Yang, Ki-Hwa;Ha, Tae-Yeol;Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.73-74
    • /
    • 2003
  • Familial form of Alzheimer's disease (FAD) is caused by mutations in presenilin-1 and presenilin-2 (PS2). PS1 and PS2 mutation are known to similar effects on the production of amyloid $\beta$ peptide (A$\beta$) and cause of cell death in the Alzheimer's brain. The importance of the alternation of calcium homeostasis in the neuronal cell death by PS1 mutation in a variety of experimental system has been demonstrated. (omitted)

  • PDF

Aryl Hydrocarbon Receptor Nuclear Translocator is Involved in ATP Homeostasis in Both Normoxic and Hypoxic Monolayer Mouse Hepatoma Cells

  • Choi, Su-Mi;Park, Hyun-Sung
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.132-136
    • /
    • 2006
  • Aryl hydrocarbon receptor nuclear translocator (Arnt) belongs to bHLH-PAS protein family. Here, we study the role of Arnt in both cell growth and glucose metabolism. Our results demonstrated that the absence of Arnt does affect ATP homeostasis but not cell growth in monolayer-cultured mouse hepatoma cells. ATP level of Arnt defective BpRc1 hepatoma cells is less than that of wild type hepatoma cells in both normoxia and hypoxia. BpRc1 cells also fail to increase the expression of glycolytic enzymes in response to hypoxia. Our results suggest that Arnt is essential for glucose metabolism and ATP production but not for cell growth.

Extracorporeal Circulation Influence on Plasma Atrial Natriuretic Peptide (승모판막질환자의 체외순환술에 따른 혈중 atrial natriuretic peptide의 변화)

  • 이형민;이동협;이정철;한승세
    • Journal of Chest Surgery
    • /
    • v.26 no.2
    • /
    • pp.102-107
    • /
    • 1993
  • Human atria play an important role in extracellular homeostasis through release of atrial natriuretic peptide. To evaluate the relationship between plasma level of atrial natriuretic peptide (ANP) and many changes which can develop during extracorporeal circulation, we studied 16 patients undergoing, 12 cardiac operation and 4 thoracic operation. Plasma level of ANP in cardiac patients group was significantly higher and more changeable than thoracic patients group. After aortic cross clamp release, blood was filled at right atrium and right atrial pressure was rapidly increased. At the same time, plasma level of ANP was rised suddenly. Increase of ANP level was correlated (p<0.05) with the increase of total bypass time, but was not correlated statistical with aortic cross clamp time. ANP level did not fall rapidly after aortic cross clamp while both atria were completely empty. This result was explained by intraoperative hypothermia at that time, which can inactivate plasmal endopeptidase and catalytic receptors of ANP. The ANP level of atrial fibrillation group in cardiac patients were generally higher than normal sinus group, but there was no statistical correlation.

  • PDF

Conjugated Linoleic Acid Negatively Regulates TR4 Activity in 3T3-L1 Adipocytes

  • Choi, Ho-Jung;Kim, Eung-Seok
    • Food Science of Animal Resources
    • /
    • v.31 no.3
    • /
    • pp.381-388
    • /
    • 2011
  • Dietary conjugated linoleic acid (CLA) play key roles in lipid metabolism. Here, we investigated the effect of CLA on the transcriptional activity of TR4, an orphan nuclear receptor that plays an important role in lipid homeostasis. CLA increased TR4 gene mRNA level in 3T3-L1 adipocytes, but inhibited TR4 transcriptional activity in a dose-dependent manner. TR4 induced perilipin expression in 3T3-L1 adipocytes by activating perilipin promoter activity. In a gel shift assay, TR4 bound direct to the putative TR4 response element in the perilipin promoter. Interestingly, CLA reduced the interaction between TR4 and consensus DR1, a well-known TR4 binding site. Additionally, CLA inhibited TR4-induced perilipin promoter activity in a dose-dependent manner. Together, our results suggest that CLA may play a role in lipid homeostasis in adipocytes by functionally regulating TR4.

Membrane associated Ca2+ buffers in the heart

  • Lee, Duk-Gyu;Michalak, Marek
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.151-157
    • /
    • 2010
  • $Ca^{2+}$ is a universal signalling molecule that affects a variety of cellular processes including cardiac development. The majority of intracellular $Ca^{2+}$ is stored in the endoplasmic and sarcoplasmic reticulum of muscle and non-muscle cells. Calreticulin is a well studied $Ca^{2+}$-buffering protein in the endoplasmic reticulum, and calreticulin deficiency is embryonic lethal due to impaired cardiac development. Despite calsequestrin being the most abundant $Ca^{2+}$-buffering protein in the sarcoplasmic reticulum, viability is maintained in embryos without calsequestrin and normal $Ca^{2+}$ release and contractile function is observed. The $Ca^{2+}$ homeostasis regulated by the endoplasmic and sarcoplasmic reticulum is critical for the development and proper function of the heart.

Regulation of Macrophage Ceruloplasmin Gene Expression: One Paradigm of 3'-UTR-mediated Translational Control

  • Mazumder, Barsanjit;Sampath, Prabha;Fox, Paul L.
    • Molecules and Cells
    • /
    • v.20 no.2
    • /
    • pp.167-172
    • /
    • 2005
  • Ceruloplasmin (Cp) is a copper protein with important functions in iron homeostasis and in inflammation. Cp mRNA expression is induced by interferon (IFN)-${\gamma}$ in U937 monocytic cells, but synthesis of Cp protein is halted after about 12 h by transcript-specific translational silencing. The silencing mechanism requires binding of a 4-component cytosolic inhibitor complex, IFN-gamma-activated inhibitor of translation (GAIT), to a defined structural element (GAIT element) in the Cp 3'-UTR. Translational silencing of Cp mRNA requires the essential proteins of mRNA circularization, suggesting that the translational inhibition requires end-to-end mRNA closure. These studies describe a new mechanism of translational control, and may shed light on the role that macrophage-derived Cp plays at the intersection of iron homeostasis and inflammation.

The history and regulatory mechanism of the Hippo pathway

  • Kim, Wantae;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.106-118
    • /
    • 2018
  • How the organ size is adjusted to the proper size during development and how organs know that they reach the original size during regeneration remain long-standing questions. Based on studies using multiple model organisms and approaches for over 20 years, a consensus has been established that the Hippo pathway plays crucial roles in controlling organ size and maintaining tissue homeostasis. Given the significance of these processes, the dysregulation of the Hippo pathway has also implicated various diseases, such as tissue degeneration and cancer. By regulating the downstream transcriptional coactivators YAP and TAZ, the Hippo pathway coordinates cell proliferation and apoptosis in response to a variety of signals including cell contact inhibition, polarity, mechanical sensation and soluble factors. Since the core components and their functions of the Hippo pathway are evolutionarily conserved, this pathway serves as a global regulator of organ size control. Therefore, further investigation of the regulatory mechanisms will provide physiological insights to better understand tissue homeostasis. In this review, the historical developments and current understandings of the regulatory mechanism of Hippo signaling pathway are discussed.