Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.3.151

Membrane associated Ca2+ buffers in the heart  

Lee, Duk-Gyu (Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta)
Michalak, Marek (Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta)
Publication Information
BMB Reports / v.43, no.3, 2010 , pp. 151-157 More about this Journal
Abstract
$Ca^{2+}$ is a universal signalling molecule that affects a variety of cellular processes including cardiac development. The majority of intracellular $Ca^{2+}$ is stored in the endoplasmic and sarcoplasmic reticulum of muscle and non-muscle cells. Calreticulin is a well studied $Ca^{2+}$-buffering protein in the endoplasmic reticulum, and calreticulin deficiency is embryonic lethal due to impaired cardiac development. Despite calsequestrin being the most abundant $Ca^{2+}$-buffering protein in the sarcoplasmic reticulum, viability is maintained in embryos without calsequestrin and normal $Ca^{2+}$ release and contractile function is observed. The $Ca^{2+}$ homeostasis regulated by the endoplasmic and sarcoplasmic reticulum is critical for the development and proper function of the heart.
Keywords
Ca$^{2+}$ homeostasis; Calreticulin; Calsequestrin; Endoplasmic reticulum; Heart; Sarcoplasmic reticulum;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Kaakinen, M., Papponen, H. and Metsikko, K. (2008) Microdomains of endoplasmic reticulum within the sarcoplasmic reticulum of skeletal myofibers. Exp. Cell. Res. 314, 237-245   DOI   ScienceOn
2 Corbett, E. F., Oikawa, K., Francois, P., Tessier, D. C., Kay, C., Bergeron, J. J., Thomas, D. Y., Krause, K. H. and Michalak, M. (1999) $Ca^{2+}$ regulation of interactions between endoplasmic reticulum chaperones. J. Biol. Chem. 274, 6203-6211   DOI   ScienceOn
3 Rossi, A. E. and Dirksen, R. T. (2006) Sarcoplasmic reticulum: the dynamic calcium governor of muscle. Muscle Nerve 33, 715-731   DOI   ScienceOn
4 Volpe, P., Villa, A., Podini, P., Martini, A., Nori, A., Panzeri, M. C. and Meldolesi, J. (1992) The endoplasmic reticulum-sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers. Proc. Natl. Acad. Sci. U.S.A. 89, 6142-6146   DOI   ScienceOn
5 Greber, U. F. and Gerace, L. (1995) Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus. J. Cell. Bio.l 128, 5-14   DOI   ScienceOn
6 Haas, I. G. and Wabl, M. (1983) Immunoglobulin heavy chain binding protein. Nature 306, 387-389   DOI   ScienceOn
7 Wada, I., Rindress, D., Cameron, P. H., Ou, W. J., Doherty, J. J., 2nd, Louvard, D., Bell, A. W., Dignard, D., Thomas, D. Y. and Bergeron, J. J. (1991) SSR alpha and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol. Chem. 266, 19599-19610   PUBMED
8 MacLennan, D. H. (2000) $Ca^{2+}$ signalling and muscle disease. Eur. J. Biochem. 267, 5291-5297   DOI   ScienceOn
9 Camacho, P. and Lechleiter, J. D. (1995) Calreticulin inhibits repetitive intracellular $Ca^{2+}$ waves. Cell 82, 765-771   DOI   ScienceOn
10 Coppolino, M. G., Woodside, M. J., Demaurex, N., Grinstein, S., St-Arnaud, R. and Dedhar, S. (1997) Calreticulin is essential for integrin-mediated calcium signalling and cell adhesion. Nature 386, 843-847   DOI   ScienceOn
11 Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I. and Opas, M. (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417, 651-666   DOI   ScienceOn
12 Szegedi, C., Sarkozi, S., Herzog, A., Jona, I. and Varsanyi, M. (1999) Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum. Biochem. J. 337, 19-22   DOI   ScienceOn
13 Gyorke, I., Hester, N., Jones, L. R. and Gyorke, S. (2004) The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium. Biophys. J. 86, 2121-2128   DOI   ScienceOn
14 Fadel, M. P., Szewczenko-Pawlikowski, M., Leclerc, P., Dziak, E., Symonds, J. M., Blaschuk, O., Michalak, M. and Opas, M. (2001) Calreticulin affects beta-catenin- associated pathways. J. Biol. Chem. 276, 27083-27089   DOI   ScienceOn
15 Wanderling, S., Simen, B. B., Ostrovsky, O., Ahmed, N. T., Vogen, S. M., Gidalevitz, T. and Argon, Y. (2007) GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol. Biol. Cell. 18, 3764-3775   DOI   ScienceOn
16 Lozyk, M. D., Papp, S., Zhang, X., Nakamura, K., Michalak, M. and Opas, M. (2006) Ultrastructural analysis of development of myocardium in calreticulin deficient mice. BMC. Dev. Biol. 6, 54   DOI   PUBMED
17 Linask, K. K., Ludwig, C., Han, M. D., Liu, X., Radice, G. L. and Knudsen, K. A. (1998) N-cadherin/catenin-mediated morphoregulation of somite formation. Dev. Biol. 202, 85-102   DOI   ScienceOn
18 Jones, L. R., Suzuki, Y. J., Wang, W., Kobayashi, Y. M., Ramesh, V., Franzini-Armstrong, C., Cleemann, L., and Morad, M. (1998) Regulation of $Ca^{2+}$signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest. 101, 1385-1393   DOI   ScienceOn
19 Allen, B. G. and Katz, S. (2000) Calreticulin and calsequestrin are differentially distributed in canine heart. J. Mol. Cell. Cardiol. 32, 2379-2384   DOI   ScienceOn
20 Yang, A., Sonin, D., Jones, L., Barry, W. H. and Liang, B. T. (2004) A beneficial role of cardiac P2X4 receptors in heart failure: rescue of the calsequestrin overexpression model of cardiomyopathy. Am. J. Physiol. Heart. Circ. Physiol. 287, H1096-1103   DOI   PUBMED   ScienceOn
21 Sato, Y., Ferguson, D. G., Sako, H., Dorn, G. W., 2nd, Kadambi, V. J., Yatani, A., Hoit, B. D., Walsh, R. A. and Kranias, E. G. (1998) Cardiac-specific overexpression of mouse cardiac calsequestrin is associated with depressed cardiovascular function and hypertrophy in transgenic mice. J. Biol. Chem. 273, 28470-28477   DOI   PUBMED   ScienceOn
22 Corbett, E. F. and Michalak, M. (2000) Calcium, a signaling molecule in the endoplasmic reticulum? Trends. Biochem. Sci. 25, 307-311   DOI   PUBMED   ScienceOn
23 Fasolato, C., Pizzo, P. and Pozzan, T. (1998) Delayed activation of the store-operated calcium current induced by calreticulin overexpression in RBL-1 cells. Mol. Biol. Cell. 9, 1513-1522   DOI   PUBMED
24 Scott, B. T., Simmerman, H. K., Collins, J. H., Nadal- Ginard, B. and Jones, L. R. (1988) Complete amino acid sequence of canine cardiac calsequestrin deduced by cDNA cloning. J. Biol. Chem. 263, 8958-8964   PUBMED
25 Guo, L., Lynch, J., Nakamura, K., Fliegel, L., Kasahara, H., Izumo, S., Komuro, I., Agellon, L. B. and Michalak, M. (2001) COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development. J. Biol. Chem. 276, 2797-2801   DOI   ScienceOn
26 Kaufman, R. J. (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes. Dev. 13, 1211-1233   DOI   PUBMED   ScienceOn
27 Ashby, M. C. and Tepikin, A. V. (2001) ER calcium and the functions of intracellular organelles. Semin. Cell. Dev. Biol. 12, 11-17   DOI   ScienceOn
28 Liou, J., Kim, M. L., Heo, W. D., Jones, J. T., Myers, J. W., Ferrell, J. E., Jr. and Meyer, T. (2005) STIM is a $Ca^{2+}$ sensor essential for $Ca^{2+}$-store-depletion-triggered $Ca^{2+}$ influx. Curr. Biol. 15, 1235-1241   DOI   ScienceOn
29 Vitadello, M., Colpo, P. and Gorza, L. (1998) Rabbit cardiac and skeletal myocytes differ in constitutive and inducible expression of the glucose-regulated protein GRP94. Biochem. J. 332, 351-359   DOI   PUBMED
30 Kaisto, T. and Metsikko, K. (2003) Distribution of the endoplasmic reticulum and its relationship with the sarcoplasmic reticulum in skeletal myofibers. Exp. Cell. Res. 289, 47-57   DOI   ScienceOn
31 John, L. M., Lechleiter, J. D. and Camacho, P. (1998) Differential modulation of SERCA2 isoforms by calreticulin. J. Cell. Biol. 142, 963-973   DOI   ScienceOn
32 Fadel, M. P., Dziak, E., Lo, C. M., Ferrier, J., Mesaeli, N., Michalak, M. and Opas, M. (1999) Calreticulin affects focal contact-dependent but not close contact-dependent cell-substratum adhesion. J. Biol. Chem. 274, 15085-15094   DOI   ScienceOn
33 Kapoor, M., Ellgaard, L., Gopalakrishnapai, J., Schirra, C., Gemma, E., Oscarson, S., Helenius, A. and Surolia, A. (2004) Mutational analysis provides molecular insight into the carbohydrate-binding region of calreticulin: pivotal roles of tyrosine-109 and aspartate-135 in carbohydrate recognition. Biochemistry 43, 97-106   DOI   ScienceOn
34 Tsutsui, H., Ishibashi, Y., Imanaka-Yoshida, K., Yamamoto, S., Yoshida, T., Sugimachi, M., Urabe, Y. and Takeshita, A. (1997) Alterations in sarcoplasmic reticulum calcium-storing proteins in pressure-overload cardiac hypertrophy. Am. J. Physiol. 272, H168-175   PUBMED
35 Nakamura, K., Zuppini, A., Arnaudeau, S., Lynch, J., Ahsan, I., Krause, R., Papp, S., De Smedt, H., Parys, J. B., Muller-Esterl, W., Lew, D. P., Krause, K. H., Demaurex, N., Opas, M. and Michalak, M. (2001) Functional specialization of calreticulin domains. J. Cell. Biol. 154, 961-972   DOI   ScienceOn
36 Hebert, D. N. and Molinari, M. (2007) In and out of the ER: protein folding, quality control, degradation, and related human diseases. Physiol. Rev. 87, 1377-1408   DOI   ScienceOn
37 Goncharova, E. J., Kam, Z., and Geiger, B. (1992) The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes. Development 114, 173-183   PUBMED
38 Rossi, D., Barone, V., Giacomello, E., Cusimano, V. and Sorrentino, V. (2008) The sarcoplasmic reticulum: an organized patchwork of specialized domains. Traffic 9, 1044-1049   DOI   ScienceOn
39 Bootman, M. D., Collins, T. J., Peppiatt, C. M., Prothero, L. S., MacKenzie, L., De Smet, P., Travers, M., Tovey, S. C., Seo, J. T., Berridge, M. J., Ciccolini, F. and Lipp, P. (2001) Calcium signalling--an overview. Semin. Cell. Dev. Biol. 12, 3-10   DOI   ScienceOn
40 MacLennan, D. H. and Reithmeier, R. A. (1998) Ion tamers. Nat. Struct. Biol. 5, 409-411   DOI   ScienceOn
41 Oliver, J. D., Roderick, H. L., Llewellyn, D. H. and High, S. (1999) ERp57 functions as a subunit of specific complexes formed with the ER lectins calreticulin and calnexin. Mol. Biol. Cell. 10, 2573-2582   DOI   PUBMED
42 Mery, L., Mesaeli, N., Michalak, M., Opas, M., Lew, D. P. and Krause, K. H. (1996) Overexpression of calreticulin increases intracellular $Ca^{2+}$ storage and decreases storeoperated $Ca^{2+}$ influx. J. Biol. Chem. 271, 9332-9339   DOI   PUBMED
43 Martin, V., Groenendyk, J., Steiner, S. S., Guo, L., Dabrowska, M., Parker, J. M., Muller-Esterl, W., Opas, M. and Michalak, M. (2006) Identification by mutational analysis of amino acid residues essential in the chaperone function of calreticulin. J. Biol. Chem. 281, 2338-2346   DOI   ScienceOn
44 Meldolesi, J. and Pozzan, T. (1998) The endoplasmic reticulum $Ca^{2+}$ store: a view from the lumen. Trends. Biochem. Sci. 23, 10-14   DOI   PUBMED   ScienceOn
45 Mesaeli, N., Nakamura, K., Zvaritch, E., Dickie, P., Dziak, E., Krause, K. H., Opas, M., MacLennan, D. H. and Michalak, M. (1999) Calreticulin is essential for cardiac development. J. Cell. Biol. 144, 857-868   DOI   ScienceOn
46 Molinari, M. and Helenius, A. (2000) Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288, 331-333   DOI   PUBMED   ScienceOn
47 Fan, G. C., Yuan, Q. and Kranias, E. G. (2008) Regulatory roles of junctin in sarcoplasmic reticulum calcium cycling and myocardial function. Trends. Cardiovasc. Med. 18, 1-5   DOI   ScienceOn
48 Baksh, S., Spamer, C., Heilmann, C. and Michalak, M. (1995) Identification of the $Zn^{2+}$ binding region in calreticulin. FEBS Lett. 376, 53-57   DOI   PUBMED   ScienceOn
49 Lebeche, D., Lucero, H. A. and Kaminer, B. (1994) Calcium binding properties of rabbit liver protein disulfide isomerase. Biochem. Biophys. Res. Commun. 202, 556-561   DOI   ScienceOn
50 Milner, R. E., Baksh, S., Shemanko, C., Carpenter, M. R., Smillie, L., Vance, J. E., Opas, M. and Michalak, M. (1991) Calreticulin, and not calsequestrin, is the major calcium binding protein of smooth muscle sarcoplasmic reticulum and liver endoplasmic reticulum. J. Biol. Chem. 266, 7155-7165   PUBMED
51 Frickel, E. M., Riek, R., Jelesarov, I., Helenius, A., Wuthrich, K. and Ellgaard, L. (2002) TROSY-NMR reveals interaction between ERp57 and the tip of the calreticulin P-domain. Proc. Natl. Acad. Sci. U.S.A. 99, 1954-1959   DOI   ScienceOn
52 Putney, J. W., Jr. and McKay, R. R. (1999) Capacitative calcium entry channels. Bioessays. 21, 38-46   DOI   ScienceOn
53 Koch, G., Smith, M., Macer, D., Webster, P. and Mortara, R. (1986) Endoplasmic reticulum contains a common, abundant calcium-binding glycoprotein, endoplasmin. J Cell. Sci. 86, 217-232   PUBMED
54 Ellgaard, L., Bettendorff, P., Braun, D., Herrmann, T., Fiorito, F., Jelesarov, I., Guntert, P., Helenius, A. and Wuthrich, K. (2002) NMR structures of 36 and 73-residue fragments of the calreticulin P-domain. J. Mol. Biol. 322, 773-784   DOI   ScienceOn
55 Molinari, M., Eriksson, K. K., Calanca, V., Galli, C., Cresswell, P., Michalak, M. and Helenius, A. (2004) Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell 13, 125-135   DOI   ScienceOn
56 Slupsky, J. R., Ohnishi, M., Carpenter, M. R. and Reithmeier, R. A. (1987) Characterization of cardiac calsequestrin. Biochemistry 26, 6539-6544   DOI   ScienceOn
57 Treves, S., Vilsen, B., Chiozzi, P., Andersen, J. P. and Zorzato, F. (1992) Molecular cloning, functional expression and tissue distribution of the cDNA encoding frog skeletal muscle calsequestrin. Biochem. J. 283, 767-772   DOI   PUBMED
58 Baksh, S., Burns, K., Andrin, C. and Michalak, M. (1995) Interaction of calreticulin with protein disulfide isomerase. J. Biol. Chem. 270, 31338-31344   DOI   PUBMED
59 Hirano, N., Shibasaki, F., Sakai, R., Tanaka, T., Nishida, J., Yazaki, Y., Takenawa, T. and Hirai, H. (1995) Molecular cloning of the human glucose-regulated protein ERp57/GRP58, a thiol-dependent reductase. Identification of its secretory form and inducible expression by the oncogenic transformation. Eur. J. Biochem. 234, 336-342   DOI   ScienceOn
60 Andrin, C., Corbett, E. F., Johnson, S., Dabrowska, M., Campbell, I. D., Eggleton, P., Opas, M. and Michalak, M. (2000) Expression and purification of mammalian calreticulin in Pichia pastoris. Protein. Expr. Purif. 20, 207-215   DOI   ScienceOn
61 Postma, A. V., Denjoy, I., Hoorntje, T. M., Lupoglazoff, J. M., Da Costa, A., Sebillon, P., Mannens, M. M., Wilde, A. A. and Guicheney, P. (2002) Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 91, e21-26   DOI   PUBMED   ScienceOn
62 Nicchitta, C. V. (1998) Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr. Opin. Immunol. 10, 103-109   DOI   PUBMED   ScienceOn
63 Webb, S. E. and Miller, A. L. (2003) Calcium signalling during embryonic development. Nat. Rev. Mol. Cell. Biol. 4, 539-551   DOI   ScienceOn
64 Arnaudeau, S., Frieden, M., Nakamura, K., Castelbou, C., Michalak, M. and Demaurex, N. (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J. Biol. Chem. 277, 46696-46705   DOI   ScienceOn
65 Nakamura, K., Robertson, M., Liu, G., Dickie, P., Guo, J. Q., Duff, H. J., Opas, M., Kavanagh, K. and Michalak, M. (2001) Complete heart block and sudden death in mice overexpressing calreticulin. J. Clin. Invest. 107, 1245-1253   DOI   ScienceOn
66 Berridge, M. J., Lipp, P. and Bootman, M. D. (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell. Biol. 1, 11-21   DOI   PUBMED   ScienceOn
67 Berridge, M. J., Bootman, M. D. and Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 4, 517-529   DOI   ScienceOn
68 Bastianutto, C., Clementi, E., Codazzi, F., Podini, P., De Giorgi, F., Rizzuto, R., Meldolesi, J. and Pozzan, T. (1995) Overexpression of calreticulin increases the $Ca^{2+}$ capacity of rapidly exchanging $Ca^{2+}$ stores and reveals aspects of their lumenal microenvironment and function. J. Cell. Biol. 130, 847-855   DOI   ScienceOn
69 Fliegel, L., Newton, E., Burns, K. and Michalak, M. (1990) Molecular cloning of cDNA encoding a 55-kDa multifunctional thyroid hormone binding protein of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265, 15496-15502   PUBMED
70 Stevens, F. J. and Argon, Y. (1999) Protein folding in the ER. Semin. Cell. Dev. Biol. 10, 443-454   DOI   ScienceOn
71 Lievremont, J. P., Rizzuto, R., Hendershot, L. and Meldolesi, J. (1997) BiP, a major chaperone protein of the endoplasmic reticulum lumen, plays a direct and important role in the storage of the rapidly exchanging pool of $Ca^{2+}$,J. Biol. Chem. 272, 30873-30879   DOI   ScienceOn
72 Baksh, S. and Michalak, M. (1991) Expression of calreticulin in Escherichia coli and identification of its $Ca^{2+}$ binding domains. J. Biol. Chem. 266, 21458-21465   PUBMED
73 Knollmann, B. C., Chopra, N., Hlaing, T., Akin, B., Yang, T., Ettensohn, K., Knollmann, B. E., Horton, K. D., Weissman, N. J., Holinstat, I., Zhang, W., Roden, D. M., Jones, L. R., Franzini-Armstrong, C. and Pfeifer, K. (2006) Casq2 deletion causes sarcoplasmic reticulum volume increase, premature $Ca^{2+}$release, and catecholaminergic polymorphic ventricular tachycardia. J. Clin. Invest. 116, 2510-2520   PUBMED
74 Miller, S. L., Currie, S., Loughrey, C. M., Kettlewell, S., Seidler, T., Reynolds, D. F., Hasenfuss, G. and Smith, G. L. (2005) Effects of calsequestrin over-expression on excitation-contraction coupling in isolated rabbit cardiomyocytes. Cardiovasc Res. 67, 667-677   DOI   ScienceOn
75 Baumann, O. and Walz, B. (2001) Endoplasmic reticulum of animal cells and its organization into structural and functional domains. Int. Rev. Cytol. 205, 149-214   DOI   PUBMED