Browse > Article

Regulation of Macrophage Ceruloplasmin Gene Expression: One Paradigm of 3'-UTR-mediated Translational Control  

Mazumder, Barsanjit (Department of Biology, Geology, and Environmental Sciences, Cleveland State University)
Sampath, Prabha (Department of Pathology, University of Washington)
Fox, Paul L. (Department of Biology, Geology, and Environmental Sciences, Cleveland State University)
Abstract
Ceruloplasmin (Cp) is a copper protein with important functions in iron homeostasis and in inflammation. Cp mRNA expression is induced by interferon (IFN)-${\gamma}$ in U937 monocytic cells, but synthesis of Cp protein is halted after about 12 h by transcript-specific translational silencing. The silencing mechanism requires binding of a 4-component cytosolic inhibitor complex, IFN-gamma-activated inhibitor of translation (GAIT), to a defined structural element (GAIT element) in the Cp 3'-UTR. Translational silencing of Cp mRNA requires the essential proteins of mRNA circularization, suggesting that the translational inhibition requires end-to-end mRNA closure. These studies describe a new mechanism of translational control, and may shed light on the role that macrophage-derived Cp plays at the intersection of iron homeostasis and inflammation.
Keywords
3'-untranslated Region; Ceruloplasmin; GAIT Complex; Inflammation; Iron Metabolism; Macrophage; Translational Control;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Attieh, Z. K., Mukhopadhyay, C. K., Seshadri, V., Tripoulas, N. A., and Fox, P. L. (1999) Ceruloplasmin ferroxidase activity stimulates cellular iron uptake by a trivalent cation-specific transport mechanism. J. Biol. Chem. 274, 1116-1123   DOI   ScienceOn
2 Ehrenwald, E. and Fox, P. L. (1996) Role of endogenous ceruloplasmin in LDL oxidation by human U937 monocytic cells. J. Clin. Invest. 97, 884-890   DOI   ScienceOn
3 Garcia, G. E., Xia, Y., Ku, G., Johnson, R. J., Wilson, C. B., et al. (2003) IL-18 translational inhibition restricts IFN-g expression in crescentic glomerulonephritis. Kidney Int. 64, 160-169   DOI   ScienceOn
4 Mazumder, B. and Fox, P. L. (1999) Delayed translational silencing of ceruloplasmin transcript in gamma interferonactivated U937 monocytic cells: Role of the 3' untranslated region. Mol. Cell. Biol. 19, 6898-6905
5 Mukhopadhyay, C. K., Mazumder, B., Lindley, P. F., and Fox, P. L. (1997) Identification of the prooxidant site of human ceruloplasmin: A model for oxidative damage by copper bound to protein surfaces. Proc. Natl. Acad. Sci. USA 94, 11546-11551
6 Pestova, T. V., Kolupaeva, V. G., Lomakin, I. B., Pilipenko, E. V., Shatsky, I. N., et al. (2001) Molecular mechanisms of translation initiation in eukaryotes. Proc. Natl. Acad. Sci. USA 98, 7029-7036
7 Rabizadeh, S., Gralla, E. B., Borchelt, D. R., Gwinn, R., Valentine, J. S., et al. (1995) Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: Studies in yeast and neural cells. Proc. Natl. Acad. Sci. USA 92, 3024-3028
8 Mazumder, B., Seshadri, V., Imataka, H., Sonenberg, N., and Fox, P. L. (2001) Translational silencing of ceruloplasmin requires the essential elements of mRNA circularization: poly(A) tail, poly(A)-binding protein, and eukaryotic translation initiation factor 4G. Mol. Cell. Biol. 21, 6440-6449   DOI
9 Pesole, G., Liuni, S., and D'Souza, M. (2000) PatSearch: a pattern matcher software that finds functional elements in nucleotide and protein sequences and assesses their statistical significance. Bioinformatics 16, 439-450   DOI   ScienceOn
10 Sampath, P., Mazumder, B., Seshadri, V., Gerber, C. A., Chavatte, L., et al. (2004) Noncanonical function of glutamylprolyl- tRNA synthetase: gene-specific silencing of translation. Cell 119, 195-208   DOI   ScienceOn
11 Qian, Z. M., Tsoi, Y. K., Ke, Y., and Wong, M. S. (2001) Ceruloplasmin promotes iron uptake rather than release in BT325 cells. Exp. Brain Res. 140, 369-374   DOI
12 Pesole, G., Liuni, S., Grillo, G., Licciulli, F., Mignone, F., et al. (2002) UTRdb and UTRsite: specialized databases of sequences and functional elements of 5′ and 3′ untranslated regions of eukaryotic mRNAs. Update 2002. Nucleic Acids Res. 30, 335-340   DOI   ScienceOn
13 Fleming, R. E., Whitman, I. P., and Gitlin, J. D. (1991) Induction of ceruloplasmin gene expression in rat lung during inflammation and hyperoxia. Am. J. Physiol. 260, L68-L74
14 Klebanoff, S. J. (1992) Bactericidal effect of $Fe^{2+}$ , ceruloplasmin, and phosphate. Arch. Biochem. Biophys. 295, 302-308   DOI   ScienceOn
15 Harris, Z. L., Durley, A. P., Man, T. K., and Gitlin, J. D. (1999) Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl. Acad. Sci. USA 96, 10812-10817
16 Sachs, A. B. and Varani, G. (2000) Eukaryotic translation initiation: there are (at least) two sides to every story. Nat. Struct. Biol. 7, 356-361   DOI   ScienceOn
17 Schechinger, T., Hartmann, H. J., and Weser, U. (1986) Copper transport from Cu(I)-thionein into apo-caeruloplasmin mediated by activated leucocytes. Biochem. J. 240, 281-283
18 Keene, J. D. and Tenenbaum, S. A. (2002) Eukaryotic mRNPs may represent posttranscriptional operons. Mol. Cell 9, 1161-1167   DOI   ScienceOn
19 Salzer, J. L., Lovejoy, L., Linder, M. C., and Rosen, C. (1998) Ran-2, a glial lineage marker, is a GPI-anchored form of ceruloplasmin. J. Neurosci. Res. 54, 147-157   DOI   ScienceOn
20 Sarkar, J., Seshadri, V., Tripoulas, N. A., Ketterer, M. E., and Fox, P. L. (2003) Role of ceruloplasmin in macrophage iron efflux during hypoxia. J. Biol. Chem. 278, 44018-44024   DOI   ScienceOn
21 Dever, T. E. (2002) Gene-specific regulation by general translation factors. Cell 108, 545-556
22 Copeland, P. R. and Driscoll, D. M. (2001) RNA binding proteins and selenocysteine. Biofactors 14, 11-16   DOI
23 Mazumder, B., Sampath, P., Seshadri, V., Maitra, R. K., DiCorleto, P., et al. (2003a) Regulated release of L13a from the 60s ribosomal subunit as a mechanism of transcript-specific translational control. Cell 115, 187-198   DOI   ScienceOn
24 Patel, B. N. and David, S. (1997) A novel glycosylphosphatidylinositol- anchored form of ceruloplasmin is expressed by mammalian astrocytes. J. Biol. Chem. 272, 20185-20190   DOI   ScienceOn
25 Tarun, S. Z. and Sachs, A. B. (1995) A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Genes Dev. 9, 2997-3007   DOI   ScienceOn
26 Xu, X., Pin, S., Gathinji, M., Fuchs, R., and Harris, Z. L. (2004) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann. N. Y. Acad. Sci. 1012, 299-305   DOI   ScienceOn
27 Mazumder, B., Seshadri, V., and Fox, P. L. (2003b) Translational control by the 3′-UTR: the ends specify the means. Trends Biochem. Sci. 28, 91-98   DOI   ScienceOn
28 Sampath, P., Mazumder, B., Seshadri, V., and Fox, P. L. (2003) Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region. Mol. Cell. Biol. 23, 1509-1519   DOI
29 Yang, F., Naylor, S. L., Lum, J. B., Cutshaw, S., McCombs, J. L., et al. (1986) Characterization, mapping, and expression of the human ceruloplasmin gene. Proc. Natl. Acad. Sci. USA 83, 3257-3261
30 Vulpe, C. D., Kuo, Y. M., Murphy, T. L., Cowley, L., Askwith, C., et al. (1999) Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 21, 195-199   DOI   ScienceOn
31 Gebauer, F. and Hentze, M. W. (2004) Molecular mechanisms of translational control. Nat. Rev. Mol. Cell Biol. 5, 827-835   DOI   ScienceOn
32 Fox, P. L., Mazumder, B., Ehrenwald, E., and Mukhopadhyay, C. K. (2000) Ceruloplasmin and cardiovascular disease. Free Radic. Biol. Med. 28, 1735-1744   DOI   ScienceOn
33 El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M., and Bogdan, C. (2003) Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171, 4561-4568
34 Klausner, R. D., Rouault, T. A., and Harford, J. B. (1993) Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72, 19-28   DOI   ScienceOn
35 Mazumder, B., Mukhopadhyay, C. K., Prok, A., Cathcart, M. K., and Fox, P. L. (1997) Induction of ceruloplasmin synthesis by IFN-g in human monocytic cells. J. Immunol. 159, 1938-1944
36 Musci, G. (2001) Ceruloplasmin, the unique multi-copper oxidase of vertebrates. Protein Pept. Lett. 8, 159-169   DOI
37 Standart, N. and Jackson, R. J. (1994) Regulation of translation by specific protein/mRNA interactions. Biochimie 76, 867-879   DOI   ScienceOn
38 Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998) Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2, 135-140   DOI   ScienceOn
39 Ben-Asouli, Y., Banai, Y., Pel-Or, Y., Shir, A., and Kaempfer, R. (2002) Human interferon-g mRNA autoregulates its translation through a pseudoknot that activates the interferoninducible protein kinase PKR. Cell 108, 221-232   DOI   ScienceOn
40 Cherukuri, S., Potla, R., Sarkar, J., Nurko, S., Harris, Z. L., et al. (2005) Unexpected role of ceruloplasmin in intestinal iron absorption. Cell Metab. (in press)