• Title/Summary/Keyword: Higher-Order Cumulants

Search Result 13, Processing Time 0.023 seconds

A Study on Blind Channel Equalization Based on Higher-Order Cumulants

  • Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.781-790
    • /
    • 2004
  • This paper presents a fourth-order cumulants based iterative algorithm for blind channel equalization. It is robust with respect to the existence of heavy Gaussian noise in a channel and does not require the minimum phase characteristic of the channel. In this approach, the transmitted signals at the receiver are over-sampled to ensure the channel described by a full-column rank matrix. It changes a single-input/single-output (SISO) finite-impulse response (FIR) channel to a single-input/multi-output (SIMO) channel. Based on the properties of the fourth-order cumulants of the over-sampled channel outputs, the iterative algorithm is derived to estimate the deconvolution matrix which makes the overall transfer matrix transparent, i.e., it can be reduced to the identity matrix by simple reordering and scaling. Both a closed-form and a stochastic version of the proposed algorithm are tested with three-ray multi-path channels in simulation studies, and their performances are compared with a method based on conventional second-order cumulants. Relatively good results are achieved, even when the transmitted symbols are significantly corrupted with Gaussian noise.

  • PDF

A NOTE ON SOME HIGHER ORDER CUMULANTS IN k PARAMETER NATURAL EXPONENTIAL FAMILY

  • KIM, HYUN CHUL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.157-160
    • /
    • 1999
  • We show the cumulants of a minimal sufficient statistics in k parameter natural exponential family by parameter function and partial parameter function. We nd the cumulants have some merits of central moments and general cumulants both. The first three cumulants are the central moments themselves and the fourth cumulant has the form related with kurtosis.

  • PDF

Higber Order Expansions of the Cumulants and the Modified Normalizing Process of Multi-dimensional Maximum Likelihood Estimator

  • Jonghwa Na
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.305-318
    • /
    • 1999
  • In this paper we derive the higher order expansions of the first four cumulants of multi-dimensional Maximum Likelihood Estimator (MLE) under the general parametric model up to and including terms of order O({{{{ {n }^{-1 } }}}}) Also we obtain the explicit form of the expansion of the normalizing trans formation of multi-dimensional MLE and show that the suggested normalizing process is much better than the normal approximation based on central limit theorem through example.

  • PDF

Korean Single-Vowel Recognition Using Cumulants in Color Noisy Environment (유색 잡음 환경하에서 Cumulant를 이용한 한국어 단모음 인식)

  • Lee, Hyung-Gun;Yang, Won-Young;Cho, Yong-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2
    • /
    • pp.50-59
    • /
    • 1994
  • This paper presents a speech recognition method utilizing third-order cumulants as a feature vector and a neural network for recognition. The use of higher-order cumulants provides desirable uncoupling between the gaussian noise and speech, which enables us to estimate the coefficients of AR model without bias. Unlike the conventional method using second-order statistics, the proposed one exhibits low bias even in SNR as low as 0 dB at the expense of higher variance. It is confirmed through computer simulation that recognition rate of korean single-vowels with the cumulant-based method is much higher than the results with the conventional method even in low SNR.

  • PDF

Time-Delay Estimation using Wavelet Theory and Higher-Order Statistics (웨이블릿 이론과 고차통계 처리기법을 이용한 시간지연 추정)

  • 차용철;김용남;정지현;남상원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.630-635
    • /
    • 1998
  • The objective of this paper is to propose a new efficient technique for the estimation of time-delay parameters using wavelet theory and third-order cumulants, yielding good performance even in the case of low SNR. In particular, band-limited non-Gaussian signals with non-zero skewness and spatially correlated Gaussian noises are considered here. The approach is based on the fact that the effects of spatially correlated Gaussian noises on time-delay estimation can be reduced by using the projection sequences (based on the redundant wavelet decomposition) of given measurements in the higher-order cumulant domain. Finally, the performance of the proposed approach is demonstrated using simulations.

  • PDF

A Recursive Estimation Algorithm for FIR System Using Higher Order Cumulants (고차 큐뮬런트를 이용한 FIR 시스템의 회귀 추정 알고리듬)

  • Kim, Hyoung-Ill;Yang, Tae-Won;Jeon, Bum-Ki;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.81-85
    • /
    • 1997
  • In this paper, a recursive estimation algorithm for FIR systems is proposed using the 3rd and 4th order cumulants. To obtain the Overdetermined Recursive Instrumental Variable(ORIV) method type algorithm, we transform the 3'th and 4'th order cumulant relationship to a certain matrix form which is consist of only output data. From the matrix form, we induce the proposed algorithm procedure following the ORIV method. The proposed algorithm provides improved estimation accuracy with smaller data and can be applied to a time varying system as well. In addition, it reduces the estimation error due to the additive Gaussian noise compared to conventional 2'rd order based algorithms since it only uses higher than 2'rd order cumulant. Simulation results are presented to compare the performance with other HOS-based algorithms.

  • PDF

Capacity Bounds in Random Wireless Networks

  • Babaei, Alireza;Agrawal, Prathima;Jabbari, Bijan
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • We consider a receiving node, located at the origin, and a Poisson point process (PPP) that models the locations of the desired transmitter as well as the interferers. Interference is known to be non-Gaussian in this scenario. The capacity bounds for additive non-Gaussian channels depend not only on the power of interference (i.e., up to second order statistics) but also on its entropy power which is influenced by higher order statistics as well. Therefore, a complete statistical characterization of interference is required to obtain the capacity bounds. While the statistics of sum of signal and interference is known in closed form, the statistics of interference highly depends on the location of the desired transmitter. In this paper, we show that there is a tradeoff between entropy power of interference on the one hand and signal and interference power on the other hand which have conflicting effects on the channel capacity. We obtain closed form results for the cumulants of the interference, when the desired transmitter node is an arbitrary neighbor of the receiver. We show that to find the cumulants, joint statistics of distances in the PPP will be required which we obtain in closed form. Using the cumulants, we approximate the interference entropy power and obtain bounds on the capacity of the channel between an arbitrary transmitter and the receiver. Our results provide insight and shed light on the capacity of links in a Poisson network. In particular, we show that, in a Poisson network, the closest hop is not necessarily the highest capacity link.

BLIND IDENTIFICATION OF IMPACTING SIGNAL USING HIGHER ORDER STATISTICS (고차통계를 이용한 충격/불량신호 탐지)

  • Seo, Jong-Soo;J.K. Hammond
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1044-1049
    • /
    • 2001
  • Classical deconvolution methods for source identification following linear filtering can only be used if the transfer function of the system is known. For many practical situations, however, this information is not accessible and/or is time varying. The problem addressed here is that of reconstruction of the original input from only the measured signal. This is known as 'blind deconvolution'. By using Higher Order Statistics (HOS), the restoration of the input signal is established through the maximisation of higher order moments (cumulants) with respect to the characteristics of the signals concerned. This restoration is achieved by constructing an inverse filter considering the choice of the initial inverse filter type. As a practical application, an experimental verification is carried out for the restoration of our impacting signal arising in the response of a cantilever beam with an end stop when randomly excited.

  • PDF

Blind Neural Equalizer using Higher-Order Statistics

  • Lee, Jung-Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.174-178
    • /
    • 2002
  • This paper discusses a blind equalization technique for FIR channel system, that might be minimum phase or not, in digital communication. The proposed techniques consist of two parts. One is to estimate the original channel coefficients based on fourth-order cumulants of the channel output, the other is to employ RBF neural network to model an inverse system fur the original channel. Here, the estimated channel is used as a reference system to train the RBF. The proposed RBF equalizer provides fast and easy teaming, due to the structural efficiency and excellent recognition-capability of R3F neural network. Throughout the simulation studies, it was found that the proposed blind RBF equalizer performed favorably better than the blind MLP equalizer, while requiring the relatively smaller computation steps in tranining.

Automatic Recognition Algorithm for Linearly Modulated Signals Under Non-coherent Asynchronous Condition (넌코히어런트 비동기하에서의 선형 변조신호 자동인식 알고리즘)

  • Sim, Kyuhong;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2409-2416
    • /
    • 2014
  • In this paper, an automatic recognition algorithm for linearly modulated signals like PSK, QAM under noncoherent asynchronous condition is proposed. Frequency, phase, and amplitude characteristics of digitally modulated signals are changed periodically. By using this characteristics, cyclic moments and higher order cumulants based features are utilized for the modulation recognition. Hierarchial decision tree method is used for high speed signal processing and totally 4 feature extraction parameters are used for modulation recognition. In the condition where the symbol number is 4,096, the recognition accuracy of the proposed algorithm is more than 95% at SNR 15dB. Also the proposed algorithm is effective to classify the signal which has carrier frequency and phase offset.