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Abstract

This paper discusses a blind equalization technique for FIR channel system, that might be minimum phase or not, in digital
communication. The proposed techniques consist of two parts. One is to estimate the original channel coefficients based on
fourth-order cumulants of the channel output, the other is to employ RBF neural network to model an inverse system for the
original channel. Here, the estimated channel is used as a reference system to train the RBF. The proposed RBF equalizer
provides fast and easy learning, due to the structural efficiency and excellent recognition-capability of RBF neural network.
Throughout the simulation studies, it was found that the proposed blind RBF equalizer performed favorably better than the blind
MLP equalizer, while requiring the relatively smaller computation steps in tranining.
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Intersymbol Interferences (ISI) arises in pulse modulation
systems whenever the energy of one received pulse does not
die away completely before the beginning of the next. ISI
may be caused by band limiting (as, for example, in telephone
channels) or frequency selectivity (fading or multipath
propagation) as in digital microwave radio and in mobile
communication systems. The purpose of an equalizer is to
combat the ISI problem. The most widely known equalizer is
an adaptive transversal equalizer, in which output signal is
compared to the expected signal and FIR filter coefficients are
adjusted in accordance with the error between the desired and
actual filter output.

For the last three decades, many of blind equalizers that do
not use the known training sequence have been proposed in
the literature beginning with Sato[1-3], because there are some
practical situations when the conventional adaptive algorithms
are not suitable for wireless communications during an
outage(caused by severe fading).

Most current blind equalization techniques use higher order
statistics (HOS) of the received sequences, directly or
indirectly, because they are efficient tools for identifying that
may be the nonminimum phase[4,5]. The HOS based
techniques have the capability to identify a nonminimum
phase system simply from its output because of the property
of polyspectra to preserve not only the magnitude but also the
phase information of the signal.

This paper develops a new method to solve the problems
of blind equalization, by combining the advantages of HOS
and a RBF neural network. The main purpose of the proposed
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blind RBF equalizer is to solve the obstacles of long time
training and complexity that are often encountered in the blind
MLP equalizers[6-8]). The RBF equalizer provides fast and
easy learning, while requiring the relatively smaller
computation steps in tranining[9-12). The proposed techniques
firstly estimates the order and coefficients of the original
channel based on the autocorrelation and the fourth-order
cumulants of the received signals. Then, an equalizer system
using a RBF neural network is trained with input sequences
from the estimated channel models. The nonlinear structure of
the neural network equalizer makes the method superior to
linear equalizers.

In the Section II, a brief summary of RBF network is
presented. Section [l presents the cumulant-based channel
estimation algorithms. Section IV gives the leaming procedure
for the blind RBF equalizer. Simulation results are provided in
Section V and Section VI gives the conclusions.

Il. Radial Basis Functions

A RBF network is a three-layer network whose output
nodes form a linear combination of the basis functions
computed by the hidden layer nodes. The basis functions in
the hidden layer produce a localized response to input stimuli.
The most common choice of basis functions for the hidden
nodes in the network is the Gaussian function. A diagram of a
radial basis function network is shown in Fig. 1.

Due to the radial nature of the basis functions, a hidden
node produces a significant response only when the input falls
within a small localized region of the input space; the output
response of the Gaussian basis function depends only on the
Euclidean norm of the difference between the center vector
and an input vector is very small. On the other hand, if the
difference of these two is large, the reponse is weak(low
value). The Gaussian basis function and the network output
are described as follows:
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Fig. 1 The architecture of radial basis function network
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= the mean vector (center) of the jth node,
0,2- : the normalization parameter for the jth node,
g; : the output of the jth node in the hidden layer
wj : the weight between the jth hidden node and kth

output node,
vy : the network outputs of £th node.

Hl. Channel Estimation

The block diagram of a base-band communication system
subject to intersymbol interference (ISI) and additive white
Gaussian noise (AWGN) is shown in Fig 2. Assume that the
received signal {y,} is generated by an FIR system described

by
Ve = go hisp—i+ ny= yp+ ny 3)

Where {4,},0</<L is the impulse response of the channel
iid,

second-order moment E {s,%} = ¢,%0,

and {s;} is nonGaussian with mean E{s;} =0,

n,
S, y .
£ Channel i é K Equalizer 8,

Fig. 2 Equalizer system
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skewness E {s,%} = 0,and E{s,*} —3[ E{s;,*}]* = 7,+0.  For
example, {s,}could be a two-level symmetric PAM sequence.
The additive noise {#n,} is zero mean, Gaussian, and
statistically independent of {s,} .

It is also assumed that the FIR system can be either
minimum phase or nonminimum phase, i.e., the polynomial
has zeros inside and outside the unit circle. The task of the
blind equalizer is to recover the input sequence {s,} by
processing {y,} only, with a constant delay and possibly a

constant phase shift, as shown in Fig. 2.

1. Estimation of channel order

The autocorrelation technique is used to estimate the
channel order that is required to specify the number of centers
in an RBF equalizer. Consider the autocorrelation

_ Cov( i, Yes1) _
or= \/ Var( yk)‘/ Var( J/k+1) N 4
El(y,— Ely:]) - (yer:— El J’k+1])]
\/E[(yk_E[yk])z] . \/E[(yk+1_E[yle+l])2]

where Cov( -, ) ,Var(-) , and E[ -] denote the
covariance, variance, and expectation operator respectively and
[ is correlation lag. From (3), E[y,] is represented as

E[yk] = hoE[Sk] + hlE[Sk_l] + th[Sk_g] (5)
+..F B Els,,] + El 0]
Assuming that s, is a binary independent sequence and #, is
an additive white Gaussian (AWGN) sequence, E[y,] and
Ely,s,] go to zero. Thus (4) reduces to

El ye: yasi
= — T 6
o1 Elyi] ©)
Then, (6) can be rewritten as

’ 1, =0

S{hihiﬁ-l

1=0
P =TT .
‘ (ﬁohzﬂfi)

o, b

1</<p 7

where ¢ 2 = E[#2] is noise variance. As shown in (7), the
basic idea of the autocorrelation technique for channel order
estimation is that when the lag / exceeds the correct order of
the channel model, the autocorrelation becomes zero. In
practical cases, the autocorrelation in (6) is not available.
Thus, we consider the normalized sample autocorrelation,
using the information in the smaller set of measurements (the
received signal) to estimate the channel order. The normalized
sample autocorrelation is

LD W G Y ®
/3 (=910
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where N is the number of samples, and

mean of y,

YE=TN

is the sample

©)

A sample autocorrelation, o ; is regarded as meaningful if it
is outside the 95 percent confidence interval

_ 1 - 1
1.9677] <D ’Sl'%?N (10)
The technique selects the last meaningful sample

autocorrelation as an estimate o, for the channel order.

2. Channel coefficient estimation

Using the properties of higher order cumulants and the
problem assumptions, the following expressions can be written
for the channel described by (3)

C,(L,m,n)=C (L, m,n)+ C,(l,mn) (11

C,(I,m, n) is the fourth-order cumulant sequence of {y;} ,
which is defined as

C,(,mn)y=M,(,mn)—M,(DM,(n—m)

MM e D — MMy (- 12

where the second-order moments M ,(;) and the fourth-order

moments M,(/,m,n) of y, are defined as

My(j):E [ykvyk+j] 3

ML, m,n)=E (Y4, Vbt 1, Vit m Vit n) (13)
ilmn =0,%1,%2,-

since {#,} is Gaussian, its fourth-order cumulants has zeros,

which means

Cy(L,m,n)=C ;{i,m,n) (14)
with knowing this fact, it is easy to show that,
p— , m, n)
Cy(l, m, n)= 7s mgﬂ Res byt B Ber (15)
(15) can be represented as
CH=c (16)

¢ are the matrix and vector consisting of the
estimated fourth-order cumulants, and H is the unknown
coefficient vector. The solution of (16) can be given in an
explicit form as

where C and

H=(CPO)"'C¥¢ amn

IV. Implementation of the Blind RBF
Equalizer

A blind RBF equalizer is implemented in this section. It
uses higher-order cumulants and a RBF neural network. Fig. 3
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shows the block diagram of the blind RBF equalizer system.

In order to train a neural network to serve as a channel
equalizer, it is necessary to generate appropriate training data.
The following is the training input to RBF network, which is
generated by the receiver instead of being provided by the
transmitter

(18

Y= 2}1?@—:‘

where x, and 7, are input signal to the estimated channel

{r} and
respectively. Therefore, input patterns for the network is the
7, , and the corresponding target is x, . In this study, it is
assumed that the network is trained to reconstruct the
originally transmitted binary signal (1 or -1).

The estimated channel is characterized by its transfer
function, which in general has the form

model input signal to the RBF equalizer

H2= goh,z*“ (19

where p is the estimated channel order. If g denotes the
equalizer order (number of tap delay elements in the
equalizer), then there are M=27*7"! different sequences

S Yk, [ Compule Autocoreration &
b| channel —p) 4th order cumulants
ITraining sequence
X} —-) Estimated channel

L 3
Sy

Fig. 3 The structure of blind RBF equalizer system

%= [ Xp Xt X pg) | (20
and the corresponding received signal vectors, r, , are
represented as

re=170 721, Ta=g) 2D
where

rp= Zoh,»xk_i (22)

The training input patterns, { R;} , can be obtained by the
following procedures



if(x,= 2 {

i= Vg,

}

where x, and R;, i=1,2,--, M , are the combination of

x;, and Uaiﬁing input pattern, respectively

Riz[Ri,O:Ri,ly"'yRi,q]T (23)
These patterns can be trained by the following  RBF
LMS(least mean square)
IEN 7
gi=e
€r= X p-a— ﬁwfgf (24)

=0
k__ k—1 k
wi=w,; T BRerg;
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H(Z)=0.04—0.052"" +0.0727% —0.212*
—0.5Z *+0.72Z 7°+0.36Z "%+ 0.0Z2 '
+0.21Z 7%+ 0.032 7°+0.0727"°
where ¢, is error , [ is the learning rate(step sizw) for

weights.

Blind Neural Equalizer using Higher-Order Statistics

V. Simulation Results

In this section, some results of computer simulations are
presented to demonstrate how higher order cumulants and
layered feed forward networks can be utilized to form a blind
adaptive equalizer. For the computational convenience, it is
assumed that the binary signals (+1 or -1) are generated at
random with an additive white Gaussian noise. Firstly, the
channel order is estimated with three different channel models.
Autocorrelations of channel observations were computed using
(8) and the results of them are illustrated in Fig4-5. As
shown in the Figures, channel orders were correctly revealed
from their normalized sample autocorrelations. For the
estimates of the channel coefficients, 5 different realizations
with the training sequences equal to 512 are performed with
SNR equal to 10 db. The mean value of the estimates is
shown in the Table 1.

Table 1. Channel coefficient estimation

.. estimated
Original channel model channel coefficient
: hy = 0.50854
H(Z)=0.5+1.0Z"
(£)=0.5+1.0 By = 1.00076
hy = 035706
H(2)=0.348+0.87z "' +0.3482 ~* hy = 0.87566
hy = 034682

The results show that the channel is almost correctly estimated
from the channel output observations. Finally, the RBF
equalizer is trained with the estimated channel model. Fig.6
shows the error rate comparison of linear equalizer and MLP
and RBF neural network equalizers.

As shown in the graph, the performance of the blind RBF
equalizer is superior to that of the blind MLP equalizer and
linear equalizer.

VI. Conclusion

In this paper, a blind equalization technique is discussed
based on higher-order statistics and a RBF. The main
procedures of the proposed blind equalizer consist of two
parts. One is to estimate the order and coefficients of original
channel using higher-order-cumulants; the estimated channel is
used to generate the reference signal. The other part is to
reconstruct the originally transmitted symbols (signals) after
training the RBF neural network. The main purpose of the
blind RBF equalize is to solve the obstacles of long time
training and complexity that are often encountered in the MLP
equalizers. The proposed RBF equalizer provides fast and easy
learning, due to the structural efficiency and excellent
recognition-capability of RBF neural network. Throughout the
simulation studies, it was found that the proposed blind RBF
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equalizer performed favorably better than the blind MLP
equalizer,

Log 10 (error probability)

-3.5

T T T 1
5 7.5 10 12.5 15
Signal to Noise Ratio(SNR)

Fig.6 Error rate comparison : H(Z)=0.5+1.0Z"*
[]: blind linear equalizer
< ¢ blind MLP equalizer
X : blind RBF equalizer

while requiring the relatively smaller computation steps in
tranining.
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