• Title/Summary/Keyword: High-temperature XRD

Search Result 1,006, Processing Time 0.026 seconds

Effect of after annealing on critical current of Bi-2212 HTS round wires (후열처리 조건에 따른 Bi-2212 고온 초전도선의 임계전류 특성 변화)

  • Ha, Dong-Woo;Kim, Sang-Chul;Oh, Jae-Gn;Oh, Sang-Soo;Ha, Hong-Soo;Song, Gyung-Jung;Goh, Rak-Kil;Kim, Ho-Sup;Kim, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.91-92
    • /
    • 2006
  • The important merit of Bi-2212/Ag wire is to apply cable as round wire state. Bi-2212 high Tc superconducting wires were fabricated in order to apply Rutherford cable near the future. Various Ag ratio from 0.22 to 0.42 of Ag tubes for PID (powder-In-Tube) process were used to investigate the workability and to prevent breakage of filaments during drawing. In order to find proper heat treatment condition, we investigated micro-structure of Bi-2212/Ag wires by using differential thermal analysis, XRD and SEM. The effect of atmosphere on the peritectic decomposition temperature of precursor was investigated. The shape of grain was observed by SEM to investigate Bi-2212 phase formation in filaments. The higher of Ag ratio of mono filament had the higher critical current density, Jc. The wire with 0.42 of Ag ratio showed 7,886 A/cm2 of Jc at 77K.

  • PDF

Microstructure Evaluation of Nano-thick Au-inserted Nickel Silicides (나노급 Au층 삽입 니켈실리사이드의 미세구조 변화)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Thermally evaporated 10 nm-Ni/1 nm-Au/(30 nm-poly)Si structures were fabricated in order to investigate the thermal stability of Au-inserted nickel silicide. The silicide samples underwent rapid thermal annealing at $300{\sim}1100^{\circ}C$ for 40 seconds. The sheet resistance was measured using a four-point probe. A scanning electron microscope and a transmission electron microscope were used to determine the cross-sectional structure and surface image. High-resolution X-ray diffraction and a scanning probe microscope were employed for the phase and surface roughness. According to sheet resistance and XRD analyses, nickel silicide with Au had no effect on widening the NiSi stabilization temperature region. Au-inserted nickel silicide on a single crystal silicon substrate showed nano-dots due to the preferred growth and a self-arranged agglomerate nano phase due to agglomeration. It was possible to tune the characteristic size of the agglomerate phase with silicidation temperatures. The nano-thick Au-insertion was shown to lead to self-arranged microstructures of nickel silicide.

The Contact Resistance and Corrosion Properties of Carburized 316L Stainless Steel (침탄된 316L 스테인리스 강의 접촉저항 및 내식 특성)

  • Hong, Wonhyuk;Ko, Seokjin;Jang, Dong-Su;Lee, Jung Joong
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.5
    • /
    • pp.192-196
    • /
    • 2013
  • Stainless steels (AISI 316L) are carburized by Inductively coupled plasma using $CH_4$ and Ar gas. The ${\gamma}_c$ phase(S-phase) is formed on the surface of stainless steel after carburizing process. The XRD peak of carburized samples is shifted to lower diffracting angle due to lattice expansion. Overall, the thickness of ${\gamma}_c$ phase showed a linear dependence with respect to increasing temperature due to the faster rate of diffusion of carbon. However, at temperatures above 500, the thickness data deviated from the linear trend. It is expected that the deviation was caused from atomic diffusion as well as other reactions that occurred at high temperatures. The interfacial contact resistance (ICR) and corrosion resistance are measured in a simulated proton exchange membrane fuel cell (PEMFC) environment. The ICR value of the carburized samples decreased from 130 $m{\Omega}cm^2$ (AISI 316L) to about 20 $m{\Omega}cm^2$. The sample carburized at 200 showed the best corrosion current density (6 ${\mu}Acm^{-2}$).

Fabrication of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 제조)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Lead zirconate titanate (PZT) thick films with a thickness of $10-20{\mu}m$ were fabricated on silicone substrates using an aerosol deposition method. The starting powder, which had diameters of $1-2{\mu}m$, was observed using SEM. The average diameter ($d_{50}$) was $1.1{\mu}m$. An XRD analysis showed a typical perovskite structure, a mixture of the tetragonal phase and rhombohedral phase. The as-deposited film with nano-sized grains had a fairly dense microstructure without any cracks. The deposited film showed a mixture of an amorphous phase and a very fine crystalline phase by diffraction pattern analysis using TEM. The as-deposited films on silicon were annealed at a temperature of $700^{\circ}C$. A 20-${\mu}m$ thick PZT film was torn out as a result of the high compressive stress between the PZT film and substrate.

Synthesis and Characterization of Rutile TiO2 Powder by the Sulfuric Acid Method (황산법을 이용한 루틸형 TiO2 분말의 제조 및 특성 평가)

  • Choi, Soon Ok;Cho, Jee Hee;Kim, Won Yong;Lim, Sung Hwan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.7
    • /
    • pp.523-530
    • /
    • 2012
  • We investigated the experimental method that uses the homogeneous precipitation method to prepare mica flakes-coated rutile-type titania pearlescent pigment with urea as a precipitant. $TiO_2$ particles exhibit a high reflection of lights and optical properties with chemical stabilities, so they are appropriate for coating on luminescent pigments (mica). The coating principle of mi ca coated titania with various thicknesses was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tested by spectrophotometer. Mica with a particle size in the range of $40-60{\mu}m$ was suspended in water, and metal sulphates and urea were added to the mixture, which was heated to boiling. The change in pH was continuously followed. The metal oxide and crystal structure were affected by the conditions of $TiOSO_4$ concentration and reaction time with a sintering temperature the range of $800-1100^{\circ}C$.

Fabrication of Electrospun Si-Zr-C Fibers by Electron Beam Irradiation (전자선 조사를 이용한 전기방사된 Si-Zr-C 섬유의 제조)

  • Seo, Dong Kwon;Jeun, Joon Pyo;Kim, Hyun Bin;Kang, Phil Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.265-269
    • /
    • 2010
  • Silicon-based non-oxide ceramic carbide fiber is one of the leading candidate ceramic materials for engineering applications because of its excellent mechanical properties at high temperature and good chemical resistance. In this study, polycarbosilane(PCS) and zirconium butoxide were used as a precursor to prepare polyzirconocarbosilane (PZC) fibers. A polymer solution was prepared by dissolving PCS in zirconium butoxide (50/50 wt%). This solution was heated at $250^{\circ}C$ in a nitrogen atmosphere for 2 hour with stirring, and then dried in a vacuum oven for 48 hour. PZC fibers were fabricated using an electrospinning technique. The fibers were irradiated with an electron beam to induce structural crosslinking. Crosslinked PZC fibers were heat treated at $1,300^{\circ}C$ in a nitrogen atmosphere. The microstructures of PZC fibers were examined by SEM. Chemical structures of PZC fibers were examined by FT-IR and XRD. Thermal stability of PZC fibers was investigated by TGA.

Characteristics of OLED Cells Fabricated with ITO Films Deposited by using Facing Target Sputtering (FTS) System (대향 타겟식 스퍼터링으로 증착한 ITO 박막이 적용된 유기발광다이오드의 특성)

  • Kim, Sangmo;Lee, Sangmin;Keum, Min Jong;Lee, Won Jae;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.71-75
    • /
    • 2018
  • In this study, we prepared OLED cell with ITO (Indium Tin Oxide) films grown on the glass substrate by facing targets sputtering. Before fabrication of OLED cells, we investigated properties of ITO films deposited at various sputtering conditions. To investigate properties of as-prepared films, we employed four-point probe, UV-VIS spectrometer, X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM), hall-effect measurement. As a results, as-prepared ITO films have high transmittance of over 85 % in the visible range (300-800 nm) and a resistivity of under $10^{-4}$ (${\Omega}-cm$). Their resistivity increased as a function of oxygen gas flow and substrate temperature. OLED cell with ITO films were fabricated by thermal evpoeartor. Properties of OLEDs cell referring to properties of ITO films.

Mesoporous SiO2 Mediated Polybenzimidazole Composite Membranes for HT-PEMFC Application (고온 PEMFC 응용을 위한 다공성 SiO2 기반 폴리벤즈이미다졸 복합막)

  • HAN, DAEUN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.128-135
    • /
    • 2019
  • In this study, the mesoporous $SiO_2$ (5, 10, or 15 wt%) was incorporated into the polybenzimidazole matrix in order to improve the proton conduction as well as physiochemical properties of composite membrane. The chemical structure of mesoporous $SiO_2$ and crystallinity of as-prepared membranes were analyzed by Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis, respectively. The thermal stability of the pristine $X_1Y_9$ and composite membranes were evaluated by thermogravimetric analyzer (TGA). On other side, the physical and chemical properties of the pristine $X_1Y_9$ and composite membranes were also determined by acid uptake and oxidative stability tests, respectively. With the incorporation of 15 wt% $SiO_2$, the composite membrane exhibits the higher proton conductivity that may be applicable for non-humidified high temperature fuel cell applications.

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide

  • Rahman, Md. Mahmudur;Ur, Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.445-449
    • /
    • 2021
  • Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.

Sublimation and high-temperature stability of SnO2-doped Bi2O3 ionic materials in controlled atmosphere

  • Cheng, Yu-Hung;Chen, Yen-Yu;Wei, Wen-Cheng J.
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.5
    • /
    • pp.388-393
    • /
    • 2018
  • Sublimation of $Bi_2O_3$-based materials is an important degradation issue for the long-term applications of many electronic devices. A series of $SnO_2$-doped $Bi_2O_3$ materials (SBO), was synthesized, densified, and then tested in air or strong reducing atmosphere. The $SnO_2$-doping effects and sublimation kinetics of the SBO materials were studied by X-ray diffraction (XRD), scanning electron microscope (SEM) and precise mass loss measurement. The results show that formation of $Bi_2Sn_2O_7$ phase greatly retards the mass loss of SBO. The SBO samples show a surface sublimation in an energy of $52.6kJ{\cdot}mol^{-1}$. However, the sublimation is also controlled by surface microstructure as the amount of vaporizing species (the Bi or gaseous Bi-oxides) is more than 0.1 mass%. The evaporation is retarded on the rough surface and the mechanism of surface evaporation is changed to diffusional control.