Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.2.128

Mesoporous SiO2 Mediated Polybenzimidazole Composite Membranes for HT-PEMFC Application  

HAN, DAEUN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
YOO, DONG JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.2, 2019 , pp. 128-135 More about this Journal
Abstract
In this study, the mesoporous $SiO_2$ (5, 10, or 15 wt%) was incorporated into the polybenzimidazole matrix in order to improve the proton conduction as well as physiochemical properties of composite membrane. The chemical structure of mesoporous $SiO_2$ and crystallinity of as-prepared membranes were analyzed by Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis, respectively. The thermal stability of the pristine $X_1Y_9$ and composite membranes were evaluated by thermogravimetric analyzer (TGA). On other side, the physical and chemical properties of the pristine $X_1Y_9$ and composite membranes were also determined by acid uptake and oxidative stability tests, respectively. With the incorporation of 15 wt% $SiO_2$, the composite membrane exhibits the higher proton conductivity that may be applicable for non-humidified high temperature fuel cell applications.
Keywords
Mesoporous $SiO_2$; Composite membrane; Oxidative stability; Thermal stability; Non-humidification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 A. Chandan, M. Hattenberger, A. E. kharouf, S. Du, A. Dhir, V. Self, B. G. Pollet, A. Ingram, W. Bujalski, "High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review", J. Power Sources, Vol. 231, 2013, pp 264-278, doi: https://doi.org/10.1016/j.jpowsour.2012.11.126.   DOI
2 M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari, "Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-$Fe_2TiO_5$ nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC)", Int. J. Hydrog. Energy, Vol. 41, No. 4, 2016, pp. 2896-2910, doi: https://doi.org/10.1016/j.ijhydene.2015.12.100.   DOI
3 A. Eguizabal, M. Sgroi, D. Pullini, E. Ferain, and M. P. Pina, "Nanoporous PBI membranes by track etching for high temperature PEMs", J. Membr. Sci., Vol. 454, 2014, pp. 243-252, doi: https://doi.org/10.1016/j.memsci.2013.12.006.   DOI
4 F. Mack, K. Aniol, C. Ellwein, J. Kerres, and R. Zeis, "Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells", J. Mater. Chem. A., Vol. 3, 2015, pp. 10864-10874, doi: https://doi.org/10.1039/C5TA01337B.   DOI
5 A. Ouadah, H. Xu, T. Luo, S. Gao, Z. Zhang, Z. Lia, and C. Zhu, "Synthesis of novel copolymers based on p-methylstyrene, N,N-butylvinylimidazolium and polybenzimidazole as highly conductive anion exchange membranes for fuel cell application", RCS Adv., Vol. 7, No. 75, 2017, pp. 47806-47817, doi: https://doi.org/10.1039/C7RA06394F.
6 A. Sivasankaran and D. Sangeetha, "Influenece of sulfonated $SiO_2$ in sulfonated polyether ether ketone nanocomposite membrane in microbial fuel cell", Fuel, Vol. 159, 2015, pp. 689-696, doi: https://doi.org/10.1016/j.fuel.2015.07.002.   DOI
7 D. Ergun, Y. Devrim, N. Bac, and I. Eroglu, "Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell", J. Appl. Poym. Sci., Vol. 124, No. S1, 2012, pp. E267-E277, doi: https://doi.org/10.1002/app.36507.   DOI
8 C. C. Ke, X. J. Li, Q. Shen, S. G. Qu, Z. G. Shao, and B. L. Yi, "Investigation on sulfuric acid sulfonation of in-situ sol-gel derived Nafion/$SiO_2$ composite membrane", Int. J. Hydrog. Energy, Vol. 36, No. 5, 2011, pp. 3606-3613, doi: https://doi.org/10.1016/j.ijhydene.2010.12.030.   DOI
9 Y. J. Kuo and H. L. Lin, "Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells", Int. J. Hydrog. Energy, Vol. 43, No. 9, 2018, pp. 4448-4457, doi: https://doi.org/10.1016/j.ijhydene.2017.12.128.   DOI
10 P. Muthuraja, S. Prakash, V. M. Shanmugam, S. Radhakrsihnan, P. Manisankar, "Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: synthesis and characterizations", Int. J. Hydrog. Energy, Vol. 43, No. 9, 2018, pp. 4763-4772, doi: https://doi.org/10.1016/j.ijhydene.2017.12.010.   DOI
11 D. E. Han and D. J. Yoo, "Synthesis and characterization of polybenzimidazole random copolymers containing methylene chain for high temperature PEMFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 6, 2018, pp. 578-586, doi: https://doi.org/10.7316/KHNES.2018.29.6.578.   DOI
12 H. Wanyika, E. Gatebe, P. Kioni, Z. Tang, and Y. Gao, "Synthesis and characterization of ordered mesoporous silica nanoparticles with tunable physical properties by varying molar composition of reagents", J. Pharm. Pharmacol., Vol. 5, No. 21, 2011, pp. 2402-2410. Retrieved from https://academicjournals.org/journal/AJPP/article-full-text-pdf/BE7360436041.
13 M. Dinari, A. Nabiyan, A. A. Ensafi, M. J. Asl, "Polybenzimidazole and polybenzimidazole/$MoS_2$ hybrids as an active nitrogen sites: hydrogen generation application", RCS Adv., Vol. 5, No. 122, 2015, pp. 100996-101005, doi: https://doi.org/10.1039/C5RA20447J.
14 A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Artificially designed, low humidifying organic-inorganic(SFBC-50/$FSiO_2$) composite membrane for electrolyte applications of fuel cells", Compos. Part B Eng., Vol. 130, 2017, pp. 103-118, doi: https://doi.org/10.1016/j.compositesb.2017.07.042.   DOI
15 F. Chu, B. Lin, B. Qiu, Z. Si, L. Qiu, Z. Gu, J. Ding, F. Yan, and J. Lu, "Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application", J. Mater. Chem., Vol. 22, No. 35, 2012, pp. 18411-18417, doi: https://doi.org/10.1039/C2JM32787B.   DOI
16 A. R. Kim, J. C. Gabunada, and D. J. Yoo, "Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications", Colloid. Polym. Sci., Vol. 296, No. 11, 2018, pp. 1891-1903, doi: https://doi.org/10.1007/s00396-018-4403-y.   DOI
17 H. Pu, L. Liu, Z. Chang, and J. Yuan, "Organic/inorganic composite membranes based on polybenzimidazole and nano-$SiO_2$", Electrochim. Acta , Vol. 54, No. 28, 2009, pp. 7536-7541, doi: https://doi.org/10.1016/j.electacta.2009.08.011.   DOI
18 K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, C. -J. Kim, D. J. Yoo, "Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell membranes", J. Membr. Sci., Vol. 434, 2013, pp. 35-43, doi: https://doi.org/10.1016/j.memsci.2013.01.037.   DOI
19 H. Sun, C. Xie, H. Chen, S. Almheiri, "A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane", Appl. Energy. Vol. 160, 2015, pp. 937-944, doi: https://doi.org/10.1016/j.apenergy.2015.02.053.   DOI
20 D. Aili, J. Zhang, M. T. D. Jakobsen, H. Zhu, T. Yang, J. Liu, M. Forsyth, C. Pan, J. O. Jensen, L. N. Cleemann, S. P. Jiang, Q. Li, "Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at $200^{\circ}C$", J. Mater. Chem. A, Vol. 4, No. 11, 2016, pp. 4020-4029, doi: https://doi.org/10.1039/C6TA01562J.
21 P. Muthuraja, S. Prakash, V. M. Shanmugam, S. Radhakrsihnan, P. Manisankar, "Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: synthesis and characterizations", Int. J. Hydrog. Energy, Vol. 43, No. 9, 2018, pp. 4763-4772, doi: https://doi.org/10.1016/j.ijhydene.2017.12.010.   DOI
22 J. A. Mader and B. C. Benicewicz, "Synthesis and properties of random copolymers of functionalised polybenzimidazoles for high temperature fuel cells", Fuel Cells, Vol. 11, No. 2, 2011, pp. 212-221, doi: https://doi.org/10.1002/fuce.201000080.   DOI
23 A. R. Kim, C. J. Park, M. Vinothkannan, and D. J. Yoo, "Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells", Compos. Part B: Eng, Vol. 155, 2018, pp. 272-281, doi: https://doi.org/10.1016/j.compositesb.2018.08.016.   DOI
24 Y. Devrim, H. Devrim, and I. Eroglu, "Polybenzimidazole/$SiO_2$ hybrid membranes for high temperature proton exchange membrane fuel cells", Int. J. Hydrog. Energy, Vol. 41, No. 23, 2016, pp. 10044-10052, doi: https://doi.org/10.1016/j.ijhydene.2016.02.043.   DOI
25 F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, "pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids", J. Am. Chem. Soc., Vol. 133, Nol. 23, 2011, pp 8778-8781, doi: https://doi.org/10.1021/ja200328s.   DOI
26 X. Tian, S. Wang, J. Li, F. Liu, X. Wang, H. Chen, H. Ni, and Z. Wang, "Composite membranes based on polybenzimidazole and ionic liquid functional Si-O-Si network for HT-PEMFC applications", Int. J. Hydrog. Energy, Vol. 42, No. 34, 2017, pp. 21913-21921, doi: https://doi.org/10.1016/j.ijhydene.2017.07.071.   DOI
27 J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", Int. J. Hydrog. Energy, Vol. 38, No. 14, 2013, pp. 21913-21921, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.
28 G. Sun, K. Han, J. Yu, H. Zhu, and Z. Wang, "Non-planar backbone structure polybenzimidazole membranes with excellent solubility, high proton conductivity, and better anti-oxidative for HTPEMFCs", RCS Adv., Vol. 6, No. 93, 2016, pp. 91068-91076, doi https://doi.org/10.1039/C6RA18197J.