DOI QR코드

DOI QR Code

Synthesis and Characterization of Rutile TiO2 Powder by the Sulfuric Acid Method

황산법을 이용한 루틸형 TiO2 분말의 제조 및 특성 평가

  • Choi, Soon Ok (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Cho, Jee Hee (Department of Advanced Materials Science and Engineering, Kangwon National University) ;
  • Kim, Won Yong (Gangwon Regional Division, Korea Institute of Industrial Technology) ;
  • Lim, Sung Hwan (Department of Advanced Materials Science and Engineering, Kangwon National University)
  • 최순옥 (강원대학교 신소재공학과) ;
  • 조지희 (강원대학교 신소재공학과) ;
  • 김원용 (한국생산기술연구원 강원권지역본부) ;
  • 임성환 (강원대학교 신소재공학과)
  • Received : 2012.02.03
  • Published : 2012.07.25

Abstract

We investigated the experimental method that uses the homogeneous precipitation method to prepare mica flakes-coated rutile-type titania pearlescent pigment with urea as a precipitant. $TiO_2$ particles exhibit a high reflection of lights and optical properties with chemical stabilities, so they are appropriate for coating on luminescent pigments (mica). The coating principle of mi ca coated titania with various thicknesses was analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tested by spectrophotometer. Mica with a particle size in the range of $40-60{\mu}m$ was suspended in water, and metal sulphates and urea were added to the mixture, which was heated to boiling. The change in pH was continuously followed. The metal oxide and crystal structure were affected by the conditions of $TiOSO_4$ concentration and reaction time with a sintering temperature the range of $800-1100^{\circ}C$.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. F. Zhao, B. Wang, X. Cui, N. Pan, H. Wang, and J. Hou, Thin Solid Films. 489, 221 (2005). https://doi.org/10.1016/j.tsf.2005.04.075
  2. J. Yu, X. Zhao, and Q. Zhao, Mater. Chem. Phys. 69, 25 (2001). https://doi.org/10.1016/S0254-0584(00)00291-1
  3. A. R. Boccaccini, M. Rossetti, J. A. Roether, S. H. S. Zein, and M. Ferraris, Constr. Build. Mater. 23, 25 (2009).
  4. A. Aidla, T. Uustare, A. A. Kiisler, J. Aarik, and V. Sammelselg, Thin Solid Films. 305, 270 (1997). https://doi.org/10.1016/S0040-6090(97)00135-1
  5. C. J. Tavares, J. Vieira, L. Rebouta, G. Hungerford, P. Coutinho, V. Teixeira, J. O. Carneiro, and A. J. Fernandes, Mater. Sci. Eng. B-Adv. Funct. Solid-State Mater. 138, 139 (2007). https://doi.org/10.1016/j.mseb.2005.11.043
  6. J. H. Kim, W. J. Lee, J. D. Kim, and S. G. Y, Met. Mater. Int. 11, 285 (2005). https://doi.org/10.1007/BF03027330
  7. V. Stengl, J. Subrt, S. Bakardjieva, A. Kalendova, and P. Kalenda, Dyes Pigment. 58, 239 (2003). https://doi.org/10.1016/S0143-7208(03)00086-X
  8. S. O. Choi, J. H. Cho, S. H. Lim, and E. Y. Chung, Korean J. Met. Mater. 5, 367 (2011).
  9. G. H. Kim, W. J. Lee, D. G Kim, S. K. Lee, S. H. Lee, and I. S. Kim, Korean J. Met. Mater. 6, 543 (2010).
  10. R. Maisch, Prog. Org. Coat. 22, 261 (1993). https://doi.org/10.1016/0033-0655(93)80028-9
  11. A. Navvotsky and K. J. Kleppa, J. Amer. Ceram. Soc. 50, 626 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15013.x
  12. H. Hsiang and S. C Lin, Mater. Chem. Phys. 95, 275 (2006). https://doi.org/10.1016/j.matchemphys.2005.06.019
  13. H. N. Lee, Surf. Sci. Rep. 48, 53 (2003). https://doi.org/10.1016/S0167-5729(02)00100-0
  14. R. C. Weast, Handbook of chemistry and physics, CRC press, Boca Raton, FL B-154 (1984).
  15. S. P. Han, Y. H. Woon, S. H. Lee, and S. C. Choi, J. Kor. Ceram. Soc. 7, 691 (1999).
  16. G. B. Song, H. Joly, F. S. Liu, T. J. Peng, P. Wan, and J. K. Liang, Surf. Sci. 220, 159 (2003). https://doi.org/10.1016/S0169-4332(03)00812-2