Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.8.445

Improvement of Thermoelectric Properties in Te-Doped Zintl Phase Magnesium-Antimonide  

Rahman, Md. Mahmudur (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation)
Ur, Soon-Chul (Dept. of Material Sci. and Eng., Research Center for Sustainable Eco-Devices and Materials (ReSEM), Korea National University of Transportation)
Publication Information
Korean Journal of Materials Research / v.31, no.8, 2021 , pp. 445-449 More about this Journal
Abstract
Zintl compound Mg3Sb2 is a promising candidate for efficient thermoelectric material due to its small band gap energy and characteristic electron-crystal phonon-glass behavior. Furthermore, this compound enables fine tuning of carrier concentration via chemical doping for optimizing thermoelectric performance. In this study, nominal compositions of Mg3.8Sb2-xTex (0 ≤ x ≤ 0.03) are synthesized through controlled melting and subsequent vacuum hot pressing method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) are carried out to investigate phase development and surface morphology during the process. It should be noted that 16 at. % of excessive Mg must be added to the system to compensate for the loss of Mg during melting process. Herein, thermoelectric properties such as Seebeck coefficient, electrical conductivity, and thermal conductivity are evaluated from low to high temperature regimes. The results show that Te substitution at Sb sites effectively tunes the majority carriers from holes to electrons, resulting in a transition from p to n-type. At 873 K, a peak ZT value of 0.27 is found for the specimen Mg3.8Sb1.99Te0.01, indicating an improved ZT value over the intrinsic value.
Keywords
zintl phase; $Mg_3Sb_2$; Te doped; controlled melting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Song, J. Zhang and B. B. Iversen, J. Mater. Chem. A, 5, 4932 (2017).   DOI
2 A. Bhardwaj, N. S. Chauhan and D. K. Misra, J. Mater. Chem. A, 3, 10777 (2015).   DOI
3 A. Bhardwaj, A. Rajput, A. K. Shukla, J. J. Pulikkotil, A. K. Srivastava, A. Dhar, G. Gupta, S. Auluck, D. K. Misra and R. C. Budhani, RSC Adv., 3, 8504 (2013).   DOI
4 H. Tamaki, H. K. Sato and T. Kanno, Adv. Mater., 28, 10182 (2016).   DOI
5 P. Gorai, B. R. Ortiz, E. S. Toberer and V. Stevanovic, J. Mater. Chem. A, 6, 13806 (2018).   DOI
6 M. M. Rahman, A. K. M. A. Shawon and S.-C. Ur, Electron. Mater. Lett., 17, 102 (2021).   DOI
7 S. M. Kauzlarich, S. R. Brown and G. J. Snyder, Dalton Trans., 21, 2099 (2007).
8 Y. Wang, X. Zhang, Y. Wang, H. Liu and J. Zhang, Phys. Status Solidi A, 216, 1 (2019).
9 Y. Cui, X. Zhang, B. Duan, J. Li, H. Yang, H. Wang, P. Wen, T. Gao, Z. Fang, G. Li, Y. Li and P. Zhai, J. Mater. Sci.: Mater. Electron., 30, 15206 (2019).   DOI
10 A. R. M. Siddique, S. Mahmud and B. V. Heyst, Renew. Sustain. Energ. Rev., 73, 730 (2017).   DOI
11 R. Franz and G. Wiedemann, Ann. Phys., 165, 497 (1853).   DOI
12 H. S. Dow, M. Na, S. J. Kim and J. W. Lee, J. Mater. Chem. C, 7, 3787 (2019).   DOI
13 G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen and Z. Ren, Nano Lett., 8, 4670 (2008).   DOI
14 Y. Pei, Z. M. Gibbs, A. Gloskovskii, B. Balke, W. G. Zeier and G. J. Snyder, Adv. Energy Mater., 4, 1400486 (2014).   DOI
15 Y. Zhao, J. S. Dyck, B. M. Hernandez and C. Burda, J. Am. Chem. Soc., 132, 4982 (2010).   DOI
16 Q. G. Cao, H. Zhang, M. B. Tang, H. H. Chen, X. X. Yang, Y. Grin and J. T. Zhao, J. Appl. Phys., 107, 10 (2010).
17 A. Bhardwaj, N. S. Chauhan, S. Goel, V. Singh, J. J. Pulikkotil, T. D. Senguttuvan and D. K. Misra, Phys. Chem. Chem. Phys., 18, 6191 (2016).   DOI
18 F. Zhang, C. Chen, H. Yao, F. Bai, L. Yin, X. Li, S. Li, W. Xue, Y. Wang, F. Cao, X. Liu, J. Sui and Q. Zhang, Adv. Funct. Mater., 30, 1 (2020).
19 A. K. M. A. Shawon, M. M. Rahman and S.-C. Ur, Electron. Mater. Lett., 16, 540 (2020).   DOI
20 J. Zhang, L. Song, K. A. Borup, M. R. V. Jorgensen and B. B. Iversen, Adv. Energy Mater., 8, 1 (2018).
21 J. Zhang, L. Song and B. B. Iversen, Angew. Chem., 132, 4308 (2020).   DOI
22 M. Dittrich and G. Schumacher, Mater. Sci. Eng., A, 604, 27 (2014).   DOI
23 H. Fujishiro, M. Ikebe, M. Yagi, K. Nakasato, Y. Shibazaki and T. Fukase, J. Low Temp. Phys., 105, 981 (1996).   DOI