DOI QR코드

DOI QR Code

Mesoporous SiO2 Mediated Polybenzimidazole Composite Membranes for HT-PEMFC Application

고온 PEMFC 응용을 위한 다공성 SiO2 기반 폴리벤즈이미다졸 복합막

  • HAN, DAEUN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University) ;
  • YOO, DONG JIN (Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
  • 한다은 (전북대학교 대학원 공과대학교 에너지저장.변환공학과 및 수소.연료전지 연구센터) ;
  • 유동진 (전북대학교 대학원 공과대학교 에너지저장.변환공학과 및 수소.연료전지 연구센터)
  • Received : 2019.03.17
  • Accepted : 2019.04.30
  • Published : 2019.04.30

Abstract

In this study, the mesoporous $SiO_2$ (5, 10, or 15 wt%) was incorporated into the polybenzimidazole matrix in order to improve the proton conduction as well as physiochemical properties of composite membrane. The chemical structure of mesoporous $SiO_2$ and crystallinity of as-prepared membranes were analyzed by Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) analysis, respectively. The thermal stability of the pristine $X_1Y_9$ and composite membranes were evaluated by thermogravimetric analyzer (TGA). On other side, the physical and chemical properties of the pristine $X_1Y_9$ and composite membranes were also determined by acid uptake and oxidative stability tests, respectively. With the incorporation of 15 wt% $SiO_2$, the composite membrane exhibits the higher proton conductivity that may be applicable for non-humidified high temperature fuel cell applications.

Keywords

SSONB2_2019_v30n2_128_f0002.png 이미지

Fig. 2. FT-IR spectroscopy of mesoporous SiO2

SSONB2_2019_v30n2_128_f0003.png 이미지

Fig. 3. XRD patterns of the X1Y9 and composite membranes and mesoporous SiO2

SSONB2_2019_v30n2_128_f0004.png 이미지

Fig. 4. TGA curves of the X1Y9 and composite membranes

SSONB2_2019_v30n2_128_f0005.png 이미지

Fig. 5. Acid uptake of the X1Y9 and composite membranes

SSONB2_2019_v30n2_128_f0007.png 이미지

Fig. 6. Oxidative stability of the X1Y9 and composite membranes

SSONB2_2019_v30n2_128_f0008.png 이미지

Fig. 7. SEM and mapping images of (a) X1Y9, (b) 10 wt% composite membrane

SSONB2_2019_v30n2_128_f0009.png 이미지

Fig. 8. EDAX images of (a) X1Y9, (b) 10 wt% composite membrane

SSONB2_2019_v30n2_128_f0011.png 이미지

Fig. 1. The chemical structure of X1Y9

SSONB2_2019_v30n2_128_f0012.png 이미지

Fig. 9. Proton conductivity of several membranes

Table 1. Swelling ratio of the X1Y9 and composite membranes.

SSONB2_2019_v30n2_128_t0001.png 이미지

References

  1. A. Chandan, M. Hattenberger, A. E. kharouf, S. Du, A. Dhir, V. Self, B. G. Pollet, A. Ingram, W. Bujalski, "High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)-A review", J. Power Sources, Vol. 231, 2013, pp 264-278, doi: https://doi.org/10.1016/j.jpowsour.2012.11.126.
  2. M. Moradi, A. Moheb, M. Javanbakht, and K. Hooshyari, "Experimental study and modeling of proton conductivity of phosphoric acid doped PBI-$Fe_2TiO_5$ nanocomposite membranes for using in high temperature proton exchange membrane fuel cell (HT-PEMFC)", Int. J. Hydrog. Energy, Vol. 41, No. 4, 2016, pp. 2896-2910, doi: https://doi.org/10.1016/j.ijhydene.2015.12.100.
  3. P. Muthuraja, S. Prakash, V. M. Shanmugam, S. Radhakrsihnan, P. Manisankar, "Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: synthesis and characterizations", Int. J. Hydrog. Energy, Vol. 43, No. 9, 2018, pp. 4763-4772, doi: https://doi.org/10.1016/j.ijhydene.2017.12.010.
  4. D. E. Han and D. J. Yoo, "Synthesis and characterization of polybenzimidazole random copolymers containing methylene chain for high temperature PEMFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 6, 2018, pp. 578-586, doi: https://doi.org/10.7316/KHNES.2018.29.6.578.
  5. H. Wanyika, E. Gatebe, P. Kioni, Z. Tang, and Y. Gao, "Synthesis and characterization of ordered mesoporous silica nanoparticles with tunable physical properties by varying molar composition of reagents", J. Pharm. Pharmacol., Vol. 5, No. 21, 2011, pp. 2402-2410. Retrieved from https://academicjournals.org/journal/AJPP/article-full-text-pdf/BE7360436041.
  6. A. R. Kim, M. Vinothkannan, and D. J. Yoo, "Artificially designed, low humidifying organic-inorganic(SFBC-50/$FSiO_2$) composite membrane for electrolyte applications of fuel cells", Compos. Part B Eng., Vol. 130, 2017, pp. 103-118, doi: https://doi.org/10.1016/j.compositesb.2017.07.042.
  7. F. Chu, B. Lin, B. Qiu, Z. Si, L. Qiu, Z. Gu, J. Ding, F. Yan, and J. Lu, "Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application", J. Mater. Chem., Vol. 22, No. 35, 2012, pp. 18411-18417, doi: https://doi.org/10.1039/C2JM32787B.
  8. A. R. Kim, J. C. Gabunada, and D. J. Yoo, "Sulfonated fluorinated block copolymer containing naphthalene unit/sulfonated polyvinylidene-co-hexafluoropropylene/functionalized silicon dioxide ternary composite membrane for low-humidity fuel cell applications", Colloid. Polym. Sci., Vol. 296, No. 11, 2018, pp. 1891-1903, doi: https://doi.org/10.1007/s00396-018-4403-y.
  9. A. R. Kim, C. J. Park, M. Vinothkannan, and D. J. Yoo, "Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells", Compos. Part B: Eng, Vol. 155, 2018, pp. 272-281, doi: https://doi.org/10.1016/j.compositesb.2018.08.016.
  10. Y. Devrim, H. Devrim, and I. Eroglu, "Polybenzimidazole/$SiO_2$ hybrid membranes for high temperature proton exchange membrane fuel cells", Int. J. Hydrog. Energy, Vol. 41, No. 23, 2016, pp. 10044-10052, doi: https://doi.org/10.1016/j.ijhydene.2016.02.043.
  11. F. Muhammad, M. Guo, W. Qi, F. Sun, A. Wang, Y. Guo, and G. Zhu, "pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids", J. Am. Chem. Soc., Vol. 133, Nol. 23, 2011, pp 8778-8781, doi: https://doi.org/10.1021/ja200328s.
  12. J. A. Mader and B. C. Benicewicz, "Synthesis and properties of random copolymers of functionalised polybenzimidazoles for high temperature fuel cells", Fuel Cells, Vol. 11, No. 2, 2011, pp. 212-221, doi: https://doi.org/10.1002/fuce.201000080.
  13. X. Tian, S. Wang, J. Li, F. Liu, X. Wang, H. Chen, H. Ni, and Z. Wang, "Composite membranes based on polybenzimidazole and ionic liquid functional Si-O-Si network for HT-PEMFC applications", Int. J. Hydrog. Energy, Vol. 42, No. 34, 2017, pp. 21913-21921, doi: https://doi.org/10.1016/j.ijhydene.2017.07.071.
  14. J. Y. Chu, A. R. Kim, K. S. Nahm, H. K. Lee, D. J. Yoo, "Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6F-BPA and perfluorobiphenylene units", Int. J. Hydrog. Energy, Vol. 38, No. 14, 2013, pp. 21913-21921, doi: https://doi.org/10.1016/j.ijhydene.2012.11.144.
  15. G. Sun, K. Han, J. Yu, H. Zhu, and Z. Wang, "Non-planar backbone structure polybenzimidazole membranes with excellent solubility, high proton conductivity, and better anti-oxidative for HTPEMFCs", RCS Adv., Vol. 6, No. 93, 2016, pp. 91068-91076, doi https://doi.org/10.1039/C6RA18197J.
  16. A. Eguizabal, M. Sgroi, D. Pullini, E. Ferain, and M. P. Pina, "Nanoporous PBI membranes by track etching for high temperature PEMs", J. Membr. Sci., Vol. 454, 2014, pp. 243-252, doi: https://doi.org/10.1016/j.memsci.2013.12.006.
  17. F. Mack, K. Aniol, C. Ellwein, J. Kerres, and R. Zeis, "Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells", J. Mater. Chem. A., Vol. 3, 2015, pp. 10864-10874, doi: https://doi.org/10.1039/C5TA01337B.
  18. A. Ouadah, H. Xu, T. Luo, S. Gao, Z. Zhang, Z. Lia, and C. Zhu, "Synthesis of novel copolymers based on p-methylstyrene, N,N-butylvinylimidazolium and polybenzimidazole as highly conductive anion exchange membranes for fuel cell application", RCS Adv., Vol. 7, No. 75, 2017, pp. 47806-47817, doi: https://doi.org/10.1039/C7RA06394F.
  19. A. Sivasankaran and D. Sangeetha, "Influenece of sulfonated $SiO_2$ in sulfonated polyether ether ketone nanocomposite membrane in microbial fuel cell", Fuel, Vol. 159, 2015, pp. 689-696, doi: https://doi.org/10.1016/j.fuel.2015.07.002.
  20. D. Ergun, Y. Devrim, N. Bac, and I. Eroglu, "Phosphoric acid doped polybenzimidazole membrane for high temperature PEM fuel cell", J. Appl. Poym. Sci., Vol. 124, No. S1, 2012, pp. E267-E277, doi: https://doi.org/10.1002/app.36507.
  21. C. C. Ke, X. J. Li, Q. Shen, S. G. Qu, Z. G. Shao, and B. L. Yi, "Investigation on sulfuric acid sulfonation of in-situ sol-gel derived Nafion/$SiO_2$ composite membrane", Int. J. Hydrog. Energy, Vol. 36, No. 5, 2011, pp. 3606-3613, doi: https://doi.org/10.1016/j.ijhydene.2010.12.030.
  22. Y. J. Kuo and H. L. Lin, "Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells", Int. J. Hydrog. Energy, Vol. 43, No. 9, 2018, pp. 4448-4457, doi: https://doi.org/10.1016/j.ijhydene.2017.12.128.
  23. M. Dinari, A. Nabiyan, A. A. Ensafi, M. J. Asl, "Polybenzimidazole and polybenzimidazole/$MoS_2$ hybrids as an active nitrogen sites: hydrogen generation application", RCS Adv., Vol. 5, No. 122, 2015, pp. 100996-101005, doi: https://doi.org/10.1039/C5RA20447J.
  24. H. Pu, L. Liu, Z. Chang, and J. Yuan, "Organic/inorganic composite membranes based on polybenzimidazole and nano-$SiO_2$", Electrochim. Acta , Vol. 54, No. 28, 2009, pp. 7536-7541, doi: https://doi.org/10.1016/j.electacta.2009.08.011.
  25. K. H. Lee, J. Y. Chu, A. R. Kim, K. S. Nahm, C. -J. Kim, D. J. Yoo, "Densely sulfonated block copolymer composite membranes containing phosphotungstic acid for fuel cell membranes", J. Membr. Sci., Vol. 434, 2013, pp. 35-43, doi: https://doi.org/10.1016/j.memsci.2013.01.037.
  26. D. Aili, J. Zhang, M. T. D. Jakobsen, H. Zhu, T. Yang, J. Liu, M. Forsyth, C. Pan, J. O. Jensen, L. N. Cleemann, S. P. Jiang, Q. Li, "Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at $200^{\circ}C$", J. Mater. Chem. A, Vol. 4, No. 11, 2016, pp. 4020-4029, doi: https://doi.org/10.1039/C6TA01562J.
  27. H. Sun, C. Xie, H. Chen, S. Almheiri, "A numerical study on the effects of temperature and mass transfer in high temperature PEM fuel cells with ab-PBI membrane", Appl. Energy. Vol. 160, 2015, pp. 937-944, doi: https://doi.org/10.1016/j.apenergy.2015.02.053.
  28. P. Muthuraja, S. Prakash, V. M. Shanmugam, S. Radhakrsihnan, P. Manisankar, "Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature PEM fuel cells: synthesis and characterizations", Int. J. Hydrog. Energy, Vol. 43, No. 9, 2018, pp. 4763-4772, doi: https://doi.org/10.1016/j.ijhydene.2017.12.010.