• Title/Summary/Keyword: High-solid

Search Result 4,545, Processing Time 0.031 seconds

Preparation of Environmental Friendly High-Solid Coatings and Their Property Changes with Solid Contents (환경친화성 하이솔리드 도료의 제조 및 고형분 함량에 따른 도막물성 변화)

  • Park, Hong-Soo;Jo, Hye-Jin;Shim, Il-Woo;You, Hyuk-Jae;Kim, Young-Chan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.116-122
    • /
    • 2005
  • Room temperature cure type of acryl-urethane coatings with high solid content were prepared in this study. Acrylic resins with 80% solid content were cured with hexamethylene diisocyanate (Desmodure N-3600). The cure time of prepared coatings BEHCC-84 (BEHC-84 : $T_g=0^{\circ}C$) and BEHCC-87 (BEHC-87 : $T_g=30^{\circ}C$), measured by rigid-body pendulum method, was recorded 8.3 hours and 3.8 hours, respectively. Dynamic viscoelastic experiment also revealed the glass transition temperature of BEHCC-84 and BEHCC-87 to be $T_g=40.3^{\circ}C$ and $T_g=43.3^{\circ}C$, respectively. It was found that the adhesion and flexural properties among various propeties of coatings were enhanced by the incorporation of caprolactone acrylate monomer into the acrylic resins.

Low-ε Static Probe Development for 15N-1H Solid-state NMR Study of Membrane Proteins for an 800 MHz NB Magnet

  • Park, Tae-Joon;Choi, Sung-Sub;Jung, Ji-Ho;Park, Yu-Geun;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.823-826
    • /
    • 2013
  • A low-${\varepsilon}$ solid-state NMR(Nuclear Magnetic Resonance) probe was developed for the spectroscopic analysis of two-dimensional $^{15}N-^1H$ heteronuclear dipolar coupling in dilute membrane proteins oriented in hydrated and dielectrically lossy lipid environments. The system employed a 800 MHz narrow-bore magnet. A solenoid coil strip shield was used to reduce deleterious RF sample heating by minimizing the conservative electric fields generated by the double-tuned resonator at high magnetic fields. The probe's design, construction, and performance in solid-state NMR experiments at high magnetic fields are described here. Such high-resolution solid-state NMR spectroscopic analysis of static oriented samples in hydrated phospholipid bilayers or bicelles could aid the structural analysis of dilute biological membrane proteins.

Production of Pigment by Liquid Culture and Monacolin K in Red Mold Rice by Solid State Fermentation of Monascus ruber Strains (Monascus ruber의 액체배양을 통한 색소 생산 및 고체발효를 통한 홍국쌀의 monacolin K 생산 특성)

  • Park, Youn-Je
    • KSBB Journal
    • /
    • v.28 no.6
    • /
    • pp.400-407
    • /
    • 2013
  • The growth characteristics and production of color pigments by Monascus strains were investigated during liquid culture, and production of monacolin K in red mold rice was carried out by solid state fermentation. Four different Monascus ruber strains were cultured in potato dextrose yeast extract broth (PDYB) media at $25^{\circ}C$ for 15 days. The high producing strain for red pigment was not corresponded to the strain for yellow pigment. Production of red pigment was high in the strain causing the fast pH change in culture broth. Production of monacolin K in red mold rice by solid state fermentation was influenced by a combination of wet cell weight and spore density in inoculum by liquid culture. Most strains showed the high production of monacolin K in red mold rice, when submerged fermentation was carried out for 5 days as inoculum for solid state fermentation. These results suggest that submerged fermentation period of inoculum have an effect on the production of monacolin K in red mold rice by solid state fermentation, and monacolin K in red mold rice could be increased by controlling the condition of submerged fermentation for inoculum.

Review of interface engineering for high-performance all-solid-state batteries (계면 제어를 기반으로 한 고성능 전고체 전지 연구)

  • Insu, Hwang;Hyeon Jeong, Lee
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

Application of Acrylic Resins Containing Acetoacetoxy Group and 90% Solid Contents to High-Solid Coatings (아세토아세톡시기 함유 90% 고형분인 아크릴수지의 하이솔리드 도료에의 적용)

  • Park, Hong-Soo;Kim, Bo-Bae;Kim, Ji-Hyun;Park, Eun-Su;Yoon, Hyun-Don;Lee, Young-Jun;Yeon, Je-Won;Ka, Eun-Ji;Lee, Ji-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.322-331
    • /
    • 2008
  • In order to synthesize high-solid coatings, acrylic resins (HSAs) containing 90% solid content were first synthesized, then the synthesized HSAs were cured with a curing agent, isocyanate, at room temperature to obtain high-solid coatings. In the HSAs synthesis, conversion was in a range of $82{\sim}87%$, and viscosities and number-averaged molecular weight ($M_n$) of the HSAs were in a range of $4380{\sim}8010$ cP and $1540{\sim}1660$, respectively. From the correlation between $T_g$ value, viscosity and $M_n$, it was found that, with increasing $T_g$ value, viscosity increases rapidly and molecular weight increases slowly. From the visco-elasity measured by the pendulum method, it was found that the curing time decreased with increasing $T_g$ values. From the tests of physical properties of the coatings' film, $60^{\circ}$ specular gloss, impact resistance and heat resistance were proved to be good and pencil hardness, drying time and pot-life were proved to be poor.

Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor (고체연료 매체순환연소기를 위한 회재분리기에서 분리속도 및 분리효율에 미치는 조업변수들의 영향)

  • RYU, HOJUNG;LEE, DONGHO;YOON, JOOYOUNG;JANG, MYOUNGSOO;BAE, DALHEE;PARK, JAEHYEON;BAEK, JEOMIN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.2
    • /
    • pp.211-219
    • /
    • 2016
  • To develop an ash separator for the solid fuel chemical looping combustion system, effects of operating variables such as solid injection nozzle velocity, diameter of solid injection nozzle, gap between solid injection line and vent line, vent line inside diameter, and solid intake height on solid separation rate and solid separation efficiency were measured and discussed using heavy and coarse particle and light and fine particles mixture as bed material in an acrylic fluidized bed apparatus. The solid separation rate increased as the solid injection nozzle velocity and the diameter of solid injection nozzle increased. However, the solid separation rate decreased as the gap between solid injection line and vent line, the vent line inside diameter, and the solid intake height increased. The solid separation efficiency was in inverse proportion to the solid separation rate. In this study, we could get high solid separation rate up to 2.39 kg/hr with 91.6% of solid separation efficiency.

DNA Sequencing Analysis Technique by Using Solid-State Nanopore (고체상 나노구멍을 이용한 DNA 염기서열 분석기술)

  • Kim, Tae-Heon;Pak, James Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.359-366
    • /
    • 2012
  • Nanopore DNA sequencing is an emerging and promising technique that can potentially realize the goal of a low-cost and high-throughput method for analyzing human genome. Especially, solid-state nanopores have relatively high mechanical stability, simple surface modification, and facile fabrication process without the need for labeling or amplification of PCR (polymerized chain reaction) in DNA sequencing. For these advantages of solid-sate nanopores, the use of solid-state nanopores has been extensively considered for developing a next generation DNA sequencing technology. Solid-state nanopore sequencing technique can determine and count charged molecules such as single-stranded DNA, double-stranded DNA, or RNA when they are driven to pass through a membrane nanopore between two electrolytes of cis-trans chambers with applied bias voltage by measuring the ionic current which varies due to the existence of the charged particles in the nanopore. Recently, many researchers have suggested that nanopore-based sensors can be competitive with other third-generation DNA sequencing technologies, and may be able to rapidly and reliably sequence the human genome for under $1,000.

Review of Database Configuration of Manure Characteristics, Analysis Methods, Bio-methane Potential Test for High Solid Manure Recycling (고상 가축 분뇨 자원화를 위한 데이터베이스 구성에 따른 분뇨특성, 분석방법 및 바이오가스 평가 방법에 대한 고찰)

  • Choi, Yong-Jun;Lee, Sang-Rak
    • Journal of Animal Environmental Science
    • /
    • v.21 no.1
    • /
    • pp.9-20
    • /
    • 2015
  • The livestock manure recycling have been performed worldwide because of its environmental and economic benefits. However, domestic standard protocol was nothing for high solid manure. Therefore, This paper was conducted to review database configuration of manure characteristics, analysis methods, bio-methane potential test for high solid manure recycling. In American society of agricultural engineers standard, manure characteristics indicated about sort of thirty types. This is important information to determine for manure recycling method. Furthermore, in order to determine exact manure characteristics recommended that synchronized chemical analysis method among studies. Bio-methane potential tests are widely performed in studies about estimation of organic substrates methane production. Although various methods and parameters were used, was no standard protocol and guideline in domestic. Bio-methane potential test methods and parameters were reviewed through various researches. Consequently, this paper is expected that assist to additional studies and manure characteristic database.

Sintering Behavior of Nano-sized Gd2O3-doped CeO2 Powder Prepared by A High Energy Ball Milling (고에너지 볼밀링에 의해 제조된 Gd2O3-doped CeO2 나노분말의 소결 거동에 관한 연구)

  • Ryu, Sung-Soo;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.15 no.4
    • /
    • pp.302-307
    • /
    • 2008
  • $Gd_2O_3$-doped $CeO_2$(GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at $1200^{\circ}C$ of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at $1300^{\circ}C$ for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process.