DOI QR코드

DOI QR Code

Review of Database Configuration of Manure Characteristics, Analysis Methods, Bio-methane Potential Test for High Solid Manure Recycling

고상 가축 분뇨 자원화를 위한 데이터베이스 구성에 따른 분뇨특성, 분석방법 및 바이오가스 평가 방법에 대한 고찰

  • Choi, Yong-Jun (Dept. of Animal Science and Technology, Konkuk University) ;
  • Lee, Sang-Rak (Dept. of Animal Science and Technology, Konkuk University)
  • 최용준 (건국대학교 동물생명과학대학 동물자원과학과) ;
  • 이상락 (건국대학교 동물생명과학대학 동물자원과학과)
  • Received : 2015.03.04
  • Accepted : 2015.03.21
  • Published : 2015.03.30

Abstract

The livestock manure recycling have been performed worldwide because of its environmental and economic benefits. However, domestic standard protocol was nothing for high solid manure. Therefore, This paper was conducted to review database configuration of manure characteristics, analysis methods, bio-methane potential test for high solid manure recycling. In American society of agricultural engineers standard, manure characteristics indicated about sort of thirty types. This is important information to determine for manure recycling method. Furthermore, in order to determine exact manure characteristics recommended that synchronized chemical analysis method among studies. Bio-methane potential tests are widely performed in studies about estimation of organic substrates methane production. Although various methods and parameters were used, was no standard protocol and guideline in domestic. Bio-methane potential test methods and parameters were reviewed through various researches. Consequently, this paper is expected that assist to additional studies and manure characteristic database.

Keywords

References

  1. Alzate, M., Munoz, R., Rogalla, F., Fdz-Polanco, F., Perez-Elvira, S., 2012. Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 123:488-494. https://doi.org/10.1016/j.biortech.2012.06.113
  2. Angelidaki, I., Alves, M.M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Van Lier, J.B., 2009. Defining the biomethane potential(BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 2009:59:5 927-934.
  3. Angelidaki, I., Sanders, W., 2004. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Bio-Technol. 3(2), 117-129. https://doi.org/10.1007/s11157-004-2502-3
  4. APHA, 1998. Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, Washington, DC, USA.
  5. AOAC, 1990. Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Arlington, VA, USA.
  6. ASTM International. Annual book of ASTM standards: Waste Management, vol. 04.11, 2011.
  7. Batstone, D., Tait, S., Starrenburg, D., 2009. Estimation of hydrolysis parameters in full scale anerobic digesters. Biotechnol. Bioeng. 102: 1513-1520. https://doi.org/10.1002/bit.22163
  8. Bhattad, U.H., Cherukuri, K., Maki, J.S., Zitomer, D.H., 2012. A Novel Approach of Preserved, Dried Methanogenic Biomass for Bioaugmentation and Standard Laboratory Applications. Proceedings of the Water Environment Federation 2012: 5392-5402.
  9. Buffiere, P., Loisel, D., Bernet, N., Delgenes, N., 2006. Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53:233-241. https://doi.org/10.2166/wst.2006.254
  10. Concannon, F., Quinn, M., O'Flaherty, S., Colleran. E., 1989. Automated measurements of the specific methanogenic activity of anaerobic digestion biomass. Biochem. Soc. Trans. 17:425. https://doi.org/10.1042/bst0170425
  11. Esposito, G., Frunzo, L., Liotta, F., Panico, A., Pirozzi, F., 2012. Bio-methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. The Open Environ. Eng. J. 5:1-8. https://doi.org/10.2174/1874829501205010001
  12. El-Mashad, H.M., Zhang. R., 2010. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 101:4021-4028. https://doi.org/10.1016/j.biortech.2010.01.027
  13. Fernndez, B., Porrier, P., Chamy. R., 2001. Effect of inoculum-substrate ratio on the start-up of solid waste anaerobic digesters. Water Sci. Technol. 44:103-108.
  14. Hamzawi, N., Kennedy, K., McLean. D., 1998. Anaerobic digestion of co-mingled municipal solid waste and sewage sludge. Water Sci. Technol. 38:127-132.
  15. Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M., Titirici, M.M., 2010. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22(7), 813-828. https://doi.org/10.1002/adma.200902812
  16. Korea energy management corporation, K. e. m. 2014. New and remewable energt statics 2013(2014 editaion). Yongin, Korea.
  17. MAFRA, 2013. Long-term manure recycling measurement. Ministry of agriculture, food and rural affairs in Korea, Sejong, Korea.
  18. Jeong, K.H., Kim, J.K., Khan, M.A., Han, D.W., Kwag, J.H., 2014. A Study on the Characteristics of Livestock Manure Treatnt Facility in Korea. J of Korea Organic Resour. Recycl. Assoc. 22:28-44.
  19. Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., & Longworth, J., 2008. Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour. Technol. 99(17), 8288-8293. https://doi.org/10.1016/j.biortech.2008.03.057
  20. Moller, H.B., Sommer, S.G., Ahring, B. K. 2004. Methane productivity of manure, straw and solid fractions of manure. Biomass Bioenerg. 26:485-495. https://doi.org/10.1016/j.biombioe.2003.08.008
  21. Neves, L., Oliveira, R., Alves, M.M., 2004. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste / inoculum ratios. Process Biochem. 39(12), 2019-2024. https://doi.org/10.1016/j.procbio.2003.10.002
  22. Pabon-Pereira, C.P., Castanares, G., van Lier, J.B., 2009. Optimizing an OxiTop protocol for screening plant material suitable for anaerobic digestion. submitted to Bioresour. Technol.
  23. Perez Lopez, C., Kirchmayr, R., Neureiter, M., Braun, R., 2005. Effect of physical and chemical pre-treatments on methane yield from maize silage and grains. In proceedings of the International Symposium on Anaerobic Digesion of Solid Waste pp. 204-208.
  24. Raposo, F., Banks, C.J., Siegert, I., Heaven, S., Borja, R., 2006. Influence of inoculum to substrate ratio on the biochemical methane potential of maize in batch tests. Process Biochem. 41(6), 1444-1450. https://doi.org/10.1016/j.procbio.2006.01.012
  25. Sanders, W.T.M., 2001. Anaerobic hydrolysis during digestion of complex substrates. Wageningen Universiteit.
  26. Umetsu, K., Yamazaki, S., Kishimoto, T., Takahashi, J., Shibata, Y., Zhang, C., Komiyama, M., 2006. Anaerobic co-igestion of dairy manure and sugar beets. In International Congress Series, Vol. 1293, pp. 307-310. Elsevier.
  27. Wall, D.M., O'Kiely, P., Murphy, J.D., 2013. The potential for biomethane from grass and slurry to satisfy renewable energy targets. Bioresour. technol. 149, 425-431. https://doi.org/10.1016/j.biortech.2013.09.094
  28. Wang, Y.S., Byrd, C.S., Barlaz, M.A., 1994. Anaerobic biodegradability of cellulose and hemicellulose in excavated refuse samples using a biochemical methane potential assay. J. Ind. Microbiol. Biotechnol. 13(3), 147-153.
  29. Weiland, P., 2006. State of the art in the dry fermentation-Recent Developments. Gulzower dicusstions, 24, 22-38.

Cited by

  1. The Bioenergy Conversion Characteristics of Feedlot Manure Discharging from Beef Cattle Barn vol.48, pp.6, 2015, https://doi.org/10.7745/KJSSF.2015.48.6.697