Browse > Article
http://dx.doi.org/10.22805/JIT.2022.42.1.019

Review of interface engineering for high-performance all-solid-state batteries  

Insu, Hwang (School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University)
Hyeon Jeong, Lee (Division of Chemical Engineering and Bioengineering, Kangwon National University)
Publication Information
Journal of Industrial Technology / v.42, no.1, 2022 , pp. 19-27 More about this Journal
Abstract
This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.
Keywords
All-solid-state-batteries; Interfaces; Antiperovskites; Local structures; Chemomechanical engineering; Microstructure engineering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Lee, H. J., Brown, Z., Zhao, Y., Fawdon, J., Song, W., Lee, J. H., Ihli, J., Pasta, M., 2021, Ordered LiNi0.5Mn1.5O4 Cathode in Bis(fluorosulfonyl)imide-Based Ionic Liquid Electrolyte: Importance of the Cathode-Electrolyte Interphase, Chem. Mater. 33:4 1238-1248.   DOI
2 Lu, Y., Zhao, C.-Z., Yuan, H., Cheng, X.-B., Huang, J.-Q., Zhang, Q., 2021, Critical Current Density in Solid-State Lithium Metal Batteries: Mechanism, Influences, and Strategies, Adv. Funct. Mater. 31:18 2009925.   DOI
3 Kasemchainan, J., Zekoll, S., Spencer Jolly, D., Ning, Z., Hartley, G. O., Marrow, J., Bruce, P. G., 2019, Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells, Nat. Mater. 18:10 1105-1111.   DOI
4 Ning, Z., Jolly, D. S., Li, G., De Meyere, R., Pu, S. D., Chen, Y., Kasemchainan, J., Ihli, J., Gong, C., Liu, B., Melvin, D., Bonnin, A., Magdysyuk, O., Adamson, P., Hartley, G.O., Monroe, C. W., Marrow, T. J., Bruce, P. G., 2021, Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells, Nat. Mater. 20:8 1121-1129.   DOI
5 Li, G., Monroe, C. W, 2019, Dendrite nucleation in lithium-conductive ceramics, Phys. Chem. Chem. Phys. 21:36 20354-20359.   DOI
6 Sharafi, A., Haslam, C. G., Kerns, R. D., Wolfenstine, J., Sakamoto, J., 2017, Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte, J. Mater. Chem. A., 5:40 21491-21504.   DOI
7 Effat, M. B., Liu, J., Lu, Z., Wan, T. H., Curcio, A., Ciucci, F., 2020, Stability, Elastic Properties, and the Li Transport Mechanism of the Protonated and Fluorinated Antiperovskite Lithium Conductors, ACS Appl. Mater. Interfaces, 12:49 55011-55022.   DOI
8 Emly, A., Kioupakis, E., Van der Ven, A., 2020, Synthesis of the Metastable Cubic Phase of Li2OHCl by a Mechanochemical Method, Inorg. Chem.. 59:17 11901-11904.   DOI
9 Lee, H. J., Darminto, B., Narayanan, S., Diaz-Lopez, M., Xiao, A. W., Chart, Y., Lee, J. H., Dawson, J. A., Pasta, M., 2022, Li-ion conductivity in Li 2 OHCl 1- x Br x solid electrolytes: grains, grain boundaries and interfaces, J. Mater. Chem. A, 10, 11574-11586.   DOI
10 Deng, Z., Ou, M., Wan, J., Li, S., Li, Y., Zhang, Y., Deng, Z., Xu, J., Qiu, Y., Liu, Y., Fang, C., Li, Q., Huang, L., Zhu, J., Han, S., Han, J., Zhao, Y., 2020, Local structural changes and inductive effects on ion conduction in antiperovskite solid electrolytes, Chem. Mater., 32:20 8827-8835.   DOI
11 Sagotra, A. K., Chu, D., Cazorla, C., 2019, Influence of lattice dynamics on lithium-ion conductivity: A first-principles study, Phys. Rev. Mater., 3:3 035405.   DOI
12 Li, S., Jiang, Z., Han, J., Xu, Z., Wang, C., Huang, H., Yu, C., Lee, S.-.J., Pianetta, P., Ohldag, H., Qiu, J., Lee, J.-S., Lin, F., Zhao, K., Liu, Y., 2020, Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides, Nat. Commun., 11:1, 1-9.   DOI
13 Xiao, Y., Turcheniuk, K., Narla, A., Song, A. Y., Ren, X., Magasinski, A., Jain, A., Huang, S., Lee H., Yushin, G., 2021, Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries, Nat. Mater., 20:7, 984-990.   DOI
14 Doux, J. M., Yang, Y., Tan, D. H., Nguyen, H., Wu, E. A., Wang, X., Banerjee, A., Meng, Y. S., 2020, Pressure effects on sulfide electrolytes for all solid-state batteries, J. Mater. Chem. A,. 8:10 5049-5055.   DOI
15 Dawson, J. A., Canepa, P., Famprikis, T., Masquelier, C., Islam, M. S., 2018, Atomic-scale influence of grain boundaries on Li-ion conduction in solid electrolytes for all-solid-state batteries, J. Am. Chem. Soc., 140:1 362-368.   DOI
16 Koerver, R., Aygün, I., Leichtweiss, T., Dietrich, C., Zhang, W., Binder, J. O., Hartmann, P., Zeier, W. G., Janek, J., 2017, Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes, Chem. Mater., 29:13 5574-5582.   DOI
17 Doerrer, C., Capone, I., Narayanan, S., Liu, J., Grovenor, C. R., Pasta, M., Grant, P. S., 2021, High Energy Density Single-Crystal NMC/Li6PS5Cl Cathodes for All-Solid-State Lithium-Metal Batteries, ACS Appl. Mater. Interfaces, 13:31 37809-37815.   DOI
18 Lee, H. J., Liu, X., Chart, Y., Tang, P., Bae, J. G., Narayanan, S., Lee, J. H., Potter, R. J., Sun, Y., Pasta, M., 2022, LiNi0.5Mn1.5O4 Cathode Microstructure for All-Solid-State Batteries, Nano Lett. 22:18 7477-7483.   DOI
19 Zhao, Y., & Daemen, L. L., 2012, Superionic Conductivity in Lithium-Rich Anti-Perovskites, J. Am. Chem. Soc., 134:36 15042-15047.   DOI
20 Wang, F., Evans, H. A., Kim, K., Yin, L., Li, Y., Tsai, P. C., Ping.-C, Liu, J., Lapidus, S. H., Brown, C. M., Siegel,. D. J., Chiang, Y. M., 2020, Dynamics of Hydroxyl Anions Promotes Lithium Ion Conduction in Antiperovskite Li2OHCl, Chem. Mater., 32:19 8481-8491.   DOI
21 Yamamoto, T., Shiba, H., Mitsukuchi, N., Sugumar, M. K., Motoyama, M., Iriyama, Y., 2020, Synthesis of the Metastable Cubic Phase of Li2OHCl by a Mechanochemical Method, Inorg. Chem.. 59:17 11901-11904.   DOI
22 Kim, K., Siegel, D. J., 2019, Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes, J. Mater. Chem. A, 7:7 3216-3227.   DOI