Browse > Article
http://dx.doi.org/10.5369/JSST.2012.21.5.359

DNA Sequencing Analysis Technique by Using Solid-State Nanopore  

Kim, Tae-Heon (School of Electrical Engineering, Korea University)
Pak, James Jung-Ho (School of Electrical Engineering, Korea University)
Publication Information
Journal of Sensor Science and Technology / v.21, no.5, 2012 , pp. 359-366 More about this Journal
Abstract
Nanopore DNA sequencing is an emerging and promising technique that can potentially realize the goal of a low-cost and high-throughput method for analyzing human genome. Especially, solid-state nanopores have relatively high mechanical stability, simple surface modification, and facile fabrication process without the need for labeling or amplification of PCR (polymerized chain reaction) in DNA sequencing. For these advantages of solid-sate nanopores, the use of solid-state nanopores has been extensively considered for developing a next generation DNA sequencing technology. Solid-state nanopore sequencing technique can determine and count charged molecules such as single-stranded DNA, double-stranded DNA, or RNA when they are driven to pass through a membrane nanopore between two electrolytes of cis-trans chambers with applied bias voltage by measuring the ionic current which varies due to the existence of the charged particles in the nanopore. Recently, many researchers have suggested that nanopore-based sensors can be competitive with other third-generation DNA sequencing technologies, and may be able to rapidly and reliably sequence the human genome for under $1,000.
Keywords
DNA sequencing; Solid-state nanopore; DNA translocation; Sensing DNA base;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. K. Rosenstein, M. Wanunu, C. A. Merchant, M. Drndic, and K. L. Shepard, "Integrated nanopore sensing platform with sub-microsecond temporal resolution", Nature Methods, Vol. 9, pp. 487-492,2012.   DOI   ScienceOn
2 M. Tsutsui, M. Taniguchi, and T. Kawai, "Fabrication of 0.5 nm electrode gaps using self-breaking technique", Applied Physics Letters, Vol. 93, 2008.
3 http://www.ks.uiuc.edu/ (retrieved on Jul. 10, 2012)
4 J. Li, D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko, "Ion-beam sculpting at nanometre length scales", Nature, Vol. 412, pp. 166-169, 2001.   DOI   ScienceOn
5 C. J. Russo and J. A. Golovchenko, "Atom-by-atom nucleation and growth of graphene nanopores", PNAS, Vol. 109, pp. 5953-5957, 2012.   DOI
6 S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. A. Golovchenko, "Graphene as a subnanometre trans-electrode membrane", Nature, Vol. 467, pp. 190-193, 2010.   DOI   ScienceOn
7 G. F. Schneider, S. W. Kowalczyk, V. E. Calado, G. Pandraud, H. W. Zandbergen, L. M. K. Vandersypen, and C. Dekker, "DNA translocation through graphene nanopores", Nano Letters, Vol. 10, pp. 3163-3167, 2010.   DOI   ScienceOn
8 B. Song, G. F. Schneider, Q. Xu, G. Pandraud, C. Dekker, and H. Zandbergen, "Atomic-scale electronbeam sculpting of near-defect-free graphene nanostructures", Nano Letters, Vol. 11, pp. 2247- 2250, 2011.   DOI   ScienceOn
9 S. M. Iqbal, D. Akin, and R. Bashir, "Solid-state nanopore channels with DNA selectivity", Nature Nanotechnology, Vol. 2, pp. 243-248, 2007.   DOI   ScienceOn
10 A. R. Hall, A. Scott, D. Rotem, K. K. Mehta, H. Bayley, and C. Dekker, "Hybrid pore formation by directed insertion of $\alpha$-haemolysin into solid-state nanopores", Nature Nanotechnology, Vol. 5, pp. 874-877, 2010.   DOI
11 T. Nelson, B. Zhang, and O. V. Prezhdo, "Detection of nucleic acids with graphene nanopores: Ab initio characterization of a novel sequencing device", Nano Letters, Vol. 10, pp. 3237-3242, 2010.   DOI   ScienceOn
12 M. Tsutsui, M. Taniguchi, K. Yokota, and T. Kawai, "Identifying single nucleotides by tunnelling current", Nature Nanotechnology, Vol. 5, pp. 286- 290, 2010.   DOI
13 S. K. Min, W. Y. Kim, Y. Cho, and K. S. Kim, "Fast DNA sequencing with a graphene-based nanochannel device", Nature Nanotechnology, Vol. 6, pp. 162-165, 2011.   DOI
14 I. M. Derrington, T. Z. Butler, M. D. Collins, E. Manrao, M. Pavlenok, M. Niederweis, and J. H. Gundlach, "Nanopore DNA sequencing with MspA", PNAS, Vol. 107, pp. 16060-16065, 2010.   DOI   ScienceOn
15 X. Liang and S. Y. Chou, "Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis", Nano Letters, Vol. 8, pp. 1472- 1476, 2008.   DOI   ScienceOn
16 H. W. Ch Postma, "Rapid sequencing of individual DNA molecules in graphene nanogaps", Nano Letters, Vol. 10, pp. 420-425, 2010.   DOI   ScienceOn
17 A. Singer, M. Wanunu, W. Morrison, H. Kuhn, M. Frank-Kamenetskii, and A. Meller, "Nanopore based sequence specific detection of duplex DNA for genomic profiling", Nano Letters, Vol. 10, pp. 738-742, 2010.   DOI   ScienceOn
18 H. Liu, J. He, J. Tang, P. Pang, D. Cao, P. Krstic, S. Joseph, S. Lindsay, and C. Nuckolls, "Translocation of single-stranded DNA through single-walled carbon nanotubes", Science, Vol. 327, pp. 64-67, 2010.   DOI   ScienceOn
19 A. J. Storm, J. H. Chen, X. S. Ling, H. W. Zandbergen, and C. Dekker, "Fabrication of solidstate nanopores with single-nanometre precision", Nature Materials, Vol. 2, pp. 537-540, 2003.   DOI   ScienceOn
20 B. M. Venkatesan, A. B. Shah, J. M. Zuo, and R. Bashir, "DNA sensing using nanocrystalline surface-enhanced $Al_{2}O_{3}$ nanopore sensors", Advanced Functional Materials, Vol. 20, pp. 1266- 1275, 2010.   DOI   ScienceOn
21 R. Fan, R. Karnik, M. Yue, D. Li, A. Majumdar, and P. Yang, "DMA translocation in inorganic nanotubes", Nano Letters, Vol. 5, pp. 1633-1637, 2005.   DOI   ScienceOn
22 K. Healy, B. Schiedt, and I. P. Morrison, "Solidstate nanopore technologies for nanopore-based DNA analysis", Nanomedicine, Vol. 2, pp. 875-897, 2007.   DOI   ScienceOn
23 B. M. Venkatesan, B. Dorvel, S. Yemenicioglu, N. Watkins, I. Petrov, and R. Bashir, "Highly sensitive, mechanically stable nanopore sensors for DNA analysis", Advanced Materials, Vol. 21, pp. 2771- 2776, 2009.   DOI   ScienceOn
24 http://www.genome.gov/sequencingcosts/ (retrieved on Jul. 4, 2012)
25 http://www.genome.gov/12513210/ (retrieved on Jul. 4, 2012)
26 P. K. Gupta, "Single-molecule DNA sequencing technologies for future genomics research", Trends in Biotechnology, Vol. 26, pp. 602-611, 2008.   DOI   ScienceOn
27 A. Kahvejian, J. Quackenbush, and J. F. Thompson, "What would you do if you could sequence everything?", Nature Biotechnology, Vol. 26, pp. 1125-1133, 2008.   DOI   ScienceOn
28 E. R. Mardis, "Next-generation DNA sequencing methods", Annual Review of Genomics and Human Genetics, Vol. 9, pp. 387-402, 2008.   DOI   ScienceOn
29 M. L. Metzker, "Sequencing technologies the next generation", Nature Reviews Genetics, Vol. 11, pp. 31-46, 2010.   DOI   ScienceOn
30 B. M. Venkatesan and R. Bashir, "Nanopore sensors for nucleic acid analysis", Nature Nanotechnology, Vol. 6, pp. 615-624, 2010.   DOI   ScienceOn
31 B. Luan, G. Stolovitzky, and G. Martyna, "Slowing and controlling the translocation of DNA in a solidstate nanopore", Nanoscale, Vol. 4, pp. 1068-1077, 2012.   DOI
32 Y. Astier, O. Braha, and H. Bayley, "Toward single molecule DNA sequencing: Direct identification of ribonucleoside and deoxyribonucleoside 5'- monophosphates by using an engineered protein nanopore equipped with a molecular adapter", Journal of the American Chemical Society, Vol. 128, pp. 1705-1710, 2006.   DOI   ScienceOn
33 J. Clarke, H. C. Wu, L. Jayasinghe, A. Patel, S. Reid, and H. Bayley, "Continuous base identification for single-molecule nanopore DNA sequencing", Nature Nanotechnology, Vol. 4, pp. 265-270, 2009.   DOI   ScienceOn