DOI QR코드

DOI QR Code

Sintering Behavior of Nano-sized Gd2O3-doped CeO2 Powder Prepared by A High Energy Ball Milling

고에너지 볼밀링에 의해 제조된 Gd2O3-doped CeO2 나노분말의 소결 거동에 관한 연구

  • Ryu, Sung-Soo (Dept. of Engineering Ceramic, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Dept. of Engineering Ceramic, Korea Institute of Ceramic Engineering and Technology)
  • 류성수 (요업기술원 이천분원 구조세라믹부) ;
  • 김형태 (요업기술원 이천분원 구조세라믹부)
  • Published : 2008.08.28

Abstract

$Gd_2O_3$-doped $CeO_2$(GDC) solid solutions have been considered as a promising materials for electrolytes in intermediate-temperature solid oxide fuel cells. In this study, the nano-sized GDC powder with average panicle size of 69nm was prepared by a high energy ball milling process and its sintering behavior was investigated. Heat-treatment at $1200^{\circ}C$ of nano-sized GDC powder mixture led to GDC solid-solution. The enhanced densification over 96% of relative density was obtained after sintering at $1300^{\circ}C$ for 2h. It was found that the sinterability of GDC powder could be significantly improved by the introduction of a high energy ball milling process.

Keywords

References

  1. S. Zha, C. Xia and G. Meng: J. Power Sources, 115 (2003) 44 https://doi.org/10.1016/S0378-7753(02)00625-0
  2. W. Huang, P. Shuk and M. Greenblatt: Chem. Mater., 9 (1997) 2240 https://doi.org/10.1021/cm970425t
  3. M. Mogensen, N. M. Sammes and G. A. Tompsett: Solid State Ionics, 129 (2000) 63 https://doi.org/10.1016/S0167-2738(99)00318-5
  4. L. Navarro, F. Marques and J. Frade: J. Electrochem. Soc., 144 (1997) 267 https://doi.org/10.1149/1.1837395
  5. M. Godickemeier, K. Sasaki, L. J. Gauckler and I. Riess: J. Electrochem. Soc., 144 (1997) 1635 https://doi.org/10.1149/1.1837653
  6. A. I. Y. Tok., L. H. Luo and F. Y. C. Boey: Materials Science and Engineering A, 383 (2004) 229 https://doi.org/10.1016/j.msea.2004.05.071
  7. T. S. Zhang, J. Ma, L. B. Kong, P. Hing, Y. J. Leng, S. H. Chan and J. A. Kilner: J. Power Sources, 124 (2003) 26 https://doi.org/10.1016/S0378-7753(03)00625-6
  8. T. Kudo, H. Obayashi: J. Electrochem. Soc., 122 (1975) 142 https://doi.org/10.1149/1.2134143
  9. K. Higashi, K. Sonoda, H. Ono, S. Sameshima and Y. Hirata: J. Mater. Res., 14 (1999) 957 https://doi.org/10.1557/JMR.1999.0127
  10. K. Huang, M. Feng and J. B. Goodenough: J. Am. Ceram. Soc., 81 (1998) 357 https://doi.org/10.1111/j.1151-2916.1998.tb02341.x
  11. K. Yamashita, K. V. Ramanujachary and M. Greenblatt: Solid State Ionics, 81 (1995) 53 https://doi.org/10.1016/0167-2738(95)99031-H
  12. J. S. Reed: Principle of Ceramics Processing, 2nd Eds., John Wiley & Sons, Inc., New York (1995)
  13. C. C. Koch: NanoStructured Mater., 2 (1993) 109 https://doi.org/10.1016/0965-9773(93)90016-5
  14. S. S. Ryu, S. K. Lee and D. H. Yoon: J Electroceram., 18 (2007) 243 https://doi.org/10.1007/s10832-007-9066-x
  15. M. Inkyo, T. Tahara, T. Iwaki, F. Iskandar, C. J. Hogan and K. Okuyama: Journal of Colloid and Interface Science, 304 (2006) 535 https://doi.org/10.1016/j.jcis.2006.09.021
  16. J. Y. Qiu, Y. Hotta, K. Watari, K. Mitsuishi and M. Yamazaki: Journal of the European Ceramic Society, 26 (2006) 385 https://doi.org/10.1016/j.jeurceramsoc.2005.06.016