• 제목/요약/키워드: High voltage gain

Search Result 468, Processing Time 0.025 seconds

Preliminary Research of CZT Based PET System Development in KAERI

  • Jo, Woo Jin;Jeong, Manhee;Kim, Han Soo;Kim, Sang Yeol;Ha, Jang Ho
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.81-86
    • /
    • 2016
  • Background: For positron emission tomography (PET) application, cadmium zinc telluride (CZT) has been investigated by several institutes to replace detectors from a conventional system using photomultipliers or Silicon-photomultipliers (SiPMs). The spatial and energy resolution in using CZT can be superior to current scintillator-based state-of-the-art PET detectors. CZT has been under development for several years at the Korea Atomic Energy Research Institute (KAERI) to provide a high performance gamma ray detection, which needs a single crystallinity, a good uniformity, a high stopping power, and a wide band gap. Materials and Methods: Before applying our own grown CZT detectors in the prototype PET system, we investigated preliminary research with a developed discrete type data acquisition (DAQ) system for coincident events at 128 anode pixels and two common cathodes of two CZT detectors from Redlen. Each detector has a $19.4{\times}19.4{\times}6mm^3$ volume size with a 2.2 mm anode pixel pitch. Discrete amplifiers consist of a preamplifier with a gain of $8mV{\cdot}fC^{-1}$ and noise of 55 equivalent noise charge (ENC), a $CR-RC^4$ shaping amplifier with a $5{\mu}s$ peak time, and an analog-to-digital converter (ADC) driver. The DAQ system has 65 mega-sample per second flash ADC, a self and external trigger, and a USB 3.0 interface. Results and Discussion: Characteristics such as the current-to-voltage curve, energy resolution, and electron mobility life-time products for CZT detectors are investigated. In addition, preliminary results of gamma ray imaging using 511 keV of a $^{22}Na$ gamma ray source were obtained. Conclusion: In this study, the DAQ system with a CZT radiation sensor was successfully developed and a PET image was acquired by two sets of the developed DAQ system.

A 10-bit 40-MS/s Low-Power CMOS Pipelined A/D Converter Design (10-bit 40-MS/s 저전력 CMOS 파이프라인 A/D 변환기 설계)

  • Lee, Sea-Young;Yu, Sang-Dae
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.137-144
    • /
    • 1997
  • In this paper, the design of a 10-bit 40-MS/s pipelined A/D converter is implemented to achieve low static power dissipation of 70 mW at the ${\pm}2.5\;V$ or +5 V power supply environment for high speed applications. A 1.5 b/stage pipeline architecture in the proposed ADC is used to allow large correction range for comparator offset and perform the fast interstage signal processing. According to necessity of high-performance op amps for design of the ADC, the new op amp with gain boosting based on a typical folded-cascode architecture is designed by using SAPICE that is an automatic design tool of op amps based on circuit simulation. A dynamic comparator with a capacitive reference voltage divider that consumes nearly no static power for this low power ADC was adopted. The ADC implemented using a $1.0{\mu}m$ n-well CMOS technology exhibits a DNL of ${\pm}0.6$ LSB, INL of +1/-0.75 LSB and SNDR of 56.3 dB for 9.97 MHz input while sampling at 40 MHz.

  • PDF

65 nm CMOS Base Band Filter for 77 GHz Automotive Radar Compensating Path Loss Difference (경로 손실 변화의 보상이 가능한 77 GHz 차량용 레이더 시스템을 위한 65 nm CMOS 베이스밴드 필터)

  • Kim, Young-Sik;Lee, Seung-Jun;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1151-1156
    • /
    • 2012
  • In this paper, the baseband filter is proposed in order to maintain a constant sensitivity regardless of distances for 77 GHz automotive radar system. Using existing DCOC loop circuit can remove DC offset and also cancel differences of received power depending on the distance. Measured results show that the maximum gain is 51 dB and high pass cutoff frequency can be tuned from 5 kHz to 15 kHz. The slope of high pass filter can be tuned from -10 to -40 dB/decade for the distance compensation. The measured NF and IIP3 are 26 dB and +4.5 dBm with 4.3 mA at 1.0 V supply voltage, respectively. The fabricated die size $500{\mu}m{\times}1,050{\mu}m$ excluding the in/out pads.

A High Linearity Low Noise Amplifier Using Modified Cascode Structure (높은 선형성을 갖는 새로운 구조의 MMIC 저잡음 증폭기)

  • Park, Seung Pyo;Eu, Kyoung Jun;No, Seung Chang;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.220-223
    • /
    • 2016
  • This letter proposes a low noise amplifier which has low noise figure and high linearity simultaneously using a cascode structure with an additional transistor. The proposed structure minimizes the noise source by using optimizing transistor sizes and also improves linearity from the current bleeding technique. The device was fabricated in a $0.5{\mu}m$ GaAs pHEMT process and has noise figure of 1.1 dB, a voltage gain of 15.0 dB, an $OIP_3$ of 30.8 dBm and an input/output return loss of 11.6 dB/10.4 dB from 1.8 to 2.6 GHz.

A Contactless Power Charging System using Half-Bridge Series Resonant Converter (Half-Bridge 직렬 공진컨버터 적용 비접촉 충전시스템)

  • Kim, Joo-Hoon;Song, Hwan-Kook;Kim, Eun-Soo;Park, Sung-Ho;Kim, Yoon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.251-259
    • /
    • 2009
  • In this paper, a contactless power supply using half-bridge series resonant converter that achieves ZVS operation of main switches and ZCS operation of secondary side diodes is proposed. Since the proposed contactless power supply using half-bridge series resonant converter operates with lower switching frequency than the resonant frequency, it can achieve ZCS operation of secondary side diodes due to discontinuous resonant current. And it is also possible to control the converter in narrow frequency range and to obtain high voltage gain, which, in turn, offers low turns ratio for the transformer and high efficiency. Based on the theoretical analysis and simulation results, the 3.15W prototype is built and the final experimental results are described.

A Design of Power Management IC for CCD Image Sensor (CCD 이미지 센서용 Power Management IC 설계)

  • Koo, Yong-Seo;Lee, Kang-Yoon;Ha, Jae-Hwan;Yang, Yil-Suk
    • Journal of IKEEE
    • /
    • v.13 no.4
    • /
    • pp.63-68
    • /
    • 2009
  • The power management integrated circuit(PMIC) for CCD image sensor is presented in this study. A CCD image sensor is very sensitive against temperature. The temperature, that is heat, is generally generated by the PMIC with low efficiency. Since the generated heat influences performance of CCD image sensor, it should be minimized by using a PMIC which has a high efficiency. In order to develop the PMIC with high efficiency, the input stage is designed with synchronous type step down DC-DC converter. The operating range of the converter is from 5V to 15V and the converter is controlled using PWM method. The PWM control circuit consists of a saw-tooth generator, a band-gap reference circuit, an error amplifier and a comparator circuit. The saw-tooth generator is designed with 1.2MHz oscillation frequency. The comparator is designed with the two stages OP Amp. And the error amplifier has 40dB DC gain and $77^{\circ}$ phase margin. The output of the step down converter is connected to input stage of the charge pump. The output of the charge pump is connected to input of the LDO which is the output stage of the PMIC. Finally, the PMIC, based on the PWM control circuit and the charge pump and the LDO, has output voltage of 15V, -7.5V, 3.3V and 5V. The PMIC is designed with a 0.35um process.

  • PDF

A Study on Wireless Broadband Internet RF Down Converter Design and Production (휴대무선인터넷 RF 하향 변환기 설계 및 제작에 관한 연구)

  • Lee, Chang-Hee;Won, Young-Jin;Lee, Jong-Yong;Lee, Sang-Hun;Lee, Won-Seok;Ra, Keuk-Hwan
    • 전자공학회논문지 IE
    • /
    • v.45 no.1
    • /
    • pp.31-37
    • /
    • 2008
  • A Wibro RF down converter of 2.3GHz band is designed and implemented in this paper. The problems that can occur in the receiver LNA(Low Noise Amplifier) to minimize additional purposes. In addition, 2.3GHz band from the 75 MHz downward to minimize the losses in the process, transform and improve efficiency, and achieve stable characteristics can be used to make high frequency characteristics of the device. Wibro repeater uses a TDMA(Time Division Multiplexing Access) method is needed because the RF switch. Production criterion specification, the input voltage from +8 V 1.2A of current consumption, 60dB gain and the noise figure of less than 2.5dB, VSWR(Voltage Standing Wave Ratio) less than 1.5, more than IMD(Inter Modulation Distortion) 60dB satisfied. Environmental conditions ($-20^{\circ}C$ to $70^{\circ}C$) to pass the test of reliability in a long time, that seemed crafted Wibro down converter be applied to the Wibro repeater.

A Calibration-Free 14b 70MS/s 0.13um CMOS Pipeline A/D Converter with High-Matching 3-D Symmetric Capacitors (높은 정확도의 3차원 대칭 커패시터를 가진 보정기법을 사용하지 않는 14비트 70MS/s 0.13um CMOS 파이프라인 A/D 변환기)

  • Moon, Kyoung-Jun;Lee, Kyung-Hoon;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.55-64
    • /
    • 2006
  • This work proposes a calibration-free 14b 70MS/s 0.13um CMOS ADC for high-performance integrated systems such as WLAN and high-definition video systems simultaneously requiring high resolution, low power, and small size at high speed. The proposed ADC employs signal insensitive 3-D fully symmetric layout techniques in two MDACs for high matching accuracy without any calibration. A three-stage pipeline architecture minimizes power consumption and chip area at the target resolution and sampling rate. The input SHA with a controlled trans-conductance ratio of two amplifier stages simultaneously achieves high gain and high phase margin with gate-bootstrapped sampling switches for 14b input accuracy at the Nyquist frequency. A back-end sub-ranging flash ADC with open-loop offset cancellation and interpolation achieves 6b accuracy at 70MS/s. Low-noise current and voltage references are employed on chip with optional off-chip reference voltages. The prototype ADC implemented in a 0.13um CMOS is based on a 0.35um minimum channel length for 2.5V applications. The measured DNL and INL are within 0.65LSB and l.80LSB, respectively. The prototype ADC shows maximum SNDR and SFDR of 66dB and 81dB and a power consumption of 235mW at 70MS/s. The active die area is $3.3mm^2$.

Design and Implementation of Plannar S-DMB Antenna with Omni-Directional Radiation Pattern Using Metamaterial Technique (메타 물질 기법을 이용한 전방향성 복사 패턴을 갖는 평면형 S-DMB 안테나 설계 및 구현)

  • An, Chan-Kyu;Yu, Ju-Bong;Jeon, Jun-Ho;Kim, Woo-Chan;Yang, Woon-Geun;Nah, Byung-Ku;Lee, Jae-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1343-1351
    • /
    • 2010
  • In this paper, a novel patch antenna based on the metamaterial CRLH(Composite Right- and Left-Handed) structure is designed, implemented, and measured. Contrary to the standard microstrip patch's fundamental resonance mode of half-wavelength or its positive multiple, the proposed antenna shows the in-phase electric field over the entire antenna. The proposed antenna has a desired omni-directional field pattern which is typical characteristic of $\lambda/4$ monopole antenna, and also shows the merit of low profile. HFSS(High Frequency Structure Simulator) of Ansoft which is based on the FEM(Finite Element Method) is used to simulate the proposed antenna. FR-4 substrate of thickness 1.6 mm and relative permitivity 4.4 is used for the proposed antenna implementation. The implemented antenna showed VSWR (Voltage Standarding Wave Ratio)$\leq$2 for the frequency band from 2.63 GHz to 2.655 GHz which is used for S-DMB (Satellite-Digital Multimedia Broadcasting) service. And measured peak gain and efficiency are 2.65 dBi and 81.14 %, respectively.

A 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for High-Quality Video Systems (고화질 영상 시스템 응용을 위한 12비트 130MS/s 108mW $1.8mm^2$ 0.18um CMOS A/D 변환기)

  • Han, Jae-Yeol;Kim, Young-Ju;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.77-85
    • /
    • 2008
  • This work proposes a 12b 130MS/s 108mW $1.8mm^2$ 0.18um CMOS ADC for high-quality video systems such as TFT-LCD displays and digital TVs requiring simultaneously high resolution, low power, and small size at high speed. The proposed ADC optimizes power consumption and chip area at the target resolution and sampling rate based on a three-step pipeline architecture. The input SHA with gate-bootstrapped sampling switches and a properly controlled trans-conductance ratio of two amplifier stages achieves a high gain and phase margin for 12b input accuracy at the Nyquist frequency. A signal-insensitive 3D-fully symmetric layout reduces a capacitor and device mismatch of two MDACs. The proposed supply- and temperature- insensitive current and voltage references are implemented on chip with a small number of transistors. The prototype ADC in a 0.18um 1P6M CMOS technology demonstrates a measured DNL and INL within 0.69LSB and 2.12LSB, respectively. The ADC shows a maximum SNDR of 53dB and 51dB and a maximum SFDR of 68dB and 66dB at 120MS/s and 130MS/s, respectively. The ADC with an active die area of $1.8mm^2$ consumes 108mW at 130MS/s and 1.8V.