• Title/Summary/Keyword: High strength clad metal

Search Result 13, Processing Time 0.03 seconds

Fabrication of the Cu-STS-Cu Clad Metal for High Strength Electric Device Lead Frame and Thermal Stability on Their Physical Properties (고강도 전자소자 리드프레임용 Cu/STS/Cu 클래드 메탈제조 및 물리적특성에 대한 열안정성 연구)

  • Kim, Il-Gwon;Son, Moon-Eui;Kim, Young-Sung
    • Journal of Welding and Joining
    • /
    • v.32 no.5
    • /
    • pp.80-86
    • /
    • 2014
  • We have successfully fabricated high strengthening Cu/STS/Cu 3 layered clad metal of $70kgf/mm^2$ grade for electric device lead frame, and investigated thermal effect of the mechanical and physical properties on the Cu/STS/Cu 3 layered clad metal lead frame material at different temperatures ranging from RT to $200^{\circ}C$. The fabricated clad metal shows a good thermal stability under 6% degrading of mechanical tensile strength and hardness change at $200^{\circ}C$ and also physical properties show stable thermal and electrical conductance of over $220W/m{\cdot}K$ and 58.44% IACS upto the $200^{\circ}$. The results confirm that fabricated high strengthening Cu/STS/Cu 3 layered clad metal can be applied for the high performed electrical lead frame devices.

Study on the Mechanical Properties and Thermal Conductive Properties of Cu/STS/Cu Clad Metal for LED/semiconductor Package Device Lead Frame (LED 및 반도체 소자 리드프레임 패키징용 Cu/STS/Cu 클래드메탈의 기계적/열전도/전기적 특성연구)

  • Lee, Chang-Hun;Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.32-37
    • /
    • 2012
  • Lead frame which has a high thermal conductivity and high mechanical strength is one of core technology for ultra-thin electronics such as LED lead frames, memory devices of semiconductors, smart phone, PDA, tablet PC, notebook PC etc. In this paper, we fabricated a Cu/STS/Cu 3-layered clad metal for lead frame packaging materials and characterized the mechanical properties and thermal conductive properties of the clad metal lead frame material. The clad metal lead frame material has a comparable thermal conductivity to typical copper alloy lead frame materials and has a reinforced mechanical tensile strength by 1.6 times to typical pure copper lead frame materials. The thermal conductivity and mechanical tensile strength of the Cu/STS/Cu clad metal are 284.35 W/m K and $52.78kg/mm^2$, respectively.

Thermal Stability of the Mechanical and Thermal Conductive Properties on Cu-STS-Cu Clad Metal for LED Package Lead Frame (LED 리드프레임 패키징용 Cu/STS/Cu 클래드 메탈의 기계 및 열전도 특성의 온도 안정성 연구)

  • Kim, Young-Sung;Kim, Il-Gwon
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.77-81
    • /
    • 2013
  • We have investigated thermal stability of the mechanical and thermal conductive properties of Cu/STS/Cu 3 layered clad metal lead frame material for a LED device package at different temperatures ranging from RT to $200^{\circ}C$. The fabricated Cu/STS/Cu clad metal has a good thermal stability for the mechanical tensile strength and thermal conductivity of the over 50 $Kg/mm^2$ to the $150^{\circ}C$ and 270 $W/m{\cdot}K$ to the $200^{\circ}C$, respectively. This clad metal lead frame material at a high temperature of $150^{\circ}C$ shows a reinforced mechanical tensile strength by 1.5 times to conventional pure copper lead frame materials and also a comparable thermal conductivity to typical copper alloy lead frame materials.

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process (고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성)

  • Joo, Yeun A;Cho, Yong-Hoon;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

Effect of CrN barrier on fuel-clad chemical interaction

  • Kim, Dongkyu;Lee, Kangsoo;Yoon, Young Soo
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.724-730
    • /
    • 2018
  • Chromium and chromium nitride were selected as potential barriers to prevent fuel-clad chemical interaction (FCCI) between the cladding and the fuel material. In this study, ferritic/martensitic HT-9 steel and misch metal were used to simulate the reaction between the cladding and fuel fission product, respectively. Radio frequency magnetron sputtering was used to deposit Cr and CrN films onto the cladding, and the gas flow rates of argon and nitrogen were fixed at certain values for each sample to control the deposition rate and the crystal structure of the films. The samples were heated for 24 h at 933 K through the diffusion couple test, and considerable amount of interdiffusion (max. thickness: $550{\mu}m$) occurred at the interface between HT-9 and misch metal when the argon and nitrogen were used individually. The elemental contents of misch metal were detected at the HT-9 through energy dispersive X-ray spectroscopy due to the interdiffusion. However, the specimens that were sputtered by mixed gases (Ar and $N_2$) exhibited excellent resistance to FCCI. The thickness of these CrN films were only $4{\mu}m$, but these films effectively prevented the FCCI due to their high adhesion strength (frictional force ${\geq}1,200{\mu}m$) and dense columnar microstructures.

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

Effects of Drawing Parameters on Mechanical Properties in High Frequency Induction Welded Tubes of BAS111 Alloy for Heat-exchangers (열교환기용 BAS111합금 고주파유도용접관에서 인발조건이 기계적 특성에 미치는 영향)

  • 국진선;김낙찬;송중근;전동태
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.65-72
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS111 welded tubes. The BAS111 aluminium alloy tubes with 25.4mm in external diameter and 1.5mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle 6.8$^{\circ}$ and power input 50㎾. With increasing the reduction of area (1.6, 5.8, 11.5, 14.2, 18.5, 22.5%) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction was estimated about 15% because of the work hardening of welds.

High strength's union of mass layers metal bearing (고강성 다층 메탈베어링의 접합)

  • 전재억;황영모;김수광;계중읍;김준안;하만경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.792-795
    • /
    • 2004
  • Despite is product that ship, vehicles, development equipment and Metal Bearing for plant equipment that is mass-produced by present domestic companies Cast White Metal Lining Bearing that is Bimetal Bearing standing 2 generation is accomplishing master and servant and this is foreseen to be used widely on industry whole in hereafter but Cast White Metal Bearing need minuteness processing, while price competitive power is depending on income from superior another thing area than itself manufacture already in advanced nation to lowdown that the technique is generalized widely, when take into account technology change aspect of industrial technology developing country, Go added value creation by deepening of price competition is judged to be difficult hereafter. Because domestic production and supply are wholly lacking almost in Metal Bearing Cladding that take advantage of these technology, Data-base about connection technology is weak with technique and Know-How for product. This research unites Back Steel and Aluminium Alloy different kind metal and make the Clad river studying technology about union of Gogangseong Dacheung metal bearing hereupon.

  • PDF

Finite Element Analysis of the Hot Rolled Cladding for the Ni-based Superalloy/steel Corrosion-resistant Alloy (CRA) Plate (니켈 기반 초합금 클래드 판재의 열간 압연 제조 공정 유한요소해석)

  • C. Kim;S.J. Bae;H. Lee;H.J. Bong;K.S. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.208-213
    • /
    • 2024
  • Ni-based superalloys have exceptional performance in high-temperature strength, corrosion resistance, etc, and it has been widely used in various applications that require corrosion resistance at high-temperature operations. However, the relatively expensive cost of the Ni-based superalloys is one of the major hurdles. The corrosion-resisted alloy(CRA) clad materials can be a cost-effective solution. In this study, finite element analysis of the hot rolling process for manufacturing of the Alloy 625/API X65 steel CRA clad plates is conducted. The stress-strain curves of the two materials are measured in compressive tests for various temperature and strain rate conditions, using the Gleeble tester. Then, strain hardening behavior is modeled following the modified Johnson-Cook model. Finite element analysis of the hot rolled cladding process is performed using this strain rate and temperature dependent hardening model. Finally, the thickness ratio of the CRA and base material is predicted and compared with experimental values.

Effects of Drawing Parameters on Mechanical Properties of BAS121 Alloy Tubes for Heat-exchangers by High Frequency Induction Welding (고주파유도용접된 열교환기용 BAS121합금튜브의 기계적 특성에 미치는 인발조건의 영향)

  • Han Sang-Woo;Kim Byung-Il;Lee Hyun-Woo;Chon Woo-Young;Gook Jin-Seon
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.851-856
    • /
    • 2004
  • The aim of this study is to investigate the optimum drawing parameter for BAS121 welded tubes. The BAS121 aluminium alloy tubes with 25 mm in external diameter and 1.3 mm in thickness for heat-exchangers were manufactured by high frequency induction welding with the V shaped convergence angle $6.5^{\circ}$ and power input 55 kW. With increasing the reduction of area ($13,\;21\%$) by drawing, tensile strength was increased and elongation was decreased. With increasing the reduction of area by drawing, hardness in weld metal increased rapidly, while that of base metal increased slowly. In the specimen with the outer diameter smaller than 22 mm, hardness of weld metal was higher than that of base metal. The optimum drawing parameter of area reduction in BAS121 alloys was estimated about $13\%$ because of the work hardening of welds.