Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.3.226

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process  

Joo, Yeun A (Department of Materials Science and Engineering, Inha University)
Cho, Yong-Hoon (Department of Materials Science and Engineering, Inha University)
Park, Jae-Sung (LT Metal LTD.)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of Powder Materials / v.29, no.3, 2022 , pp. 226-232 More about this Journal
Abstract
In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.
Keywords
High Velocity Oxygen Fuel Spray; Switching Device; Cu-15Ag-5P (BCuP-5); Multi-layer clad material; Microstructure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Madej: Arch. Metall. Mater., 57 (2012) 605.   DOI
2 L. Y. Nan, W. C. Wen, P. Z. Long, Y. J. Chun and L. Z. Song: T. Nonferr. Metal Soc., 21 (2011) s394.   DOI
3 S. Amin and H. Panchal: Int. J. Cur. Trends Eng. Res., 2 (2016) 556.
4 F. Findik and H. Uzun: Mater. Des., 24 (2003) 489.   DOI
5 A. Ksiazkiewicz: Poznan University of Technology Academic Journals. Electrical Engineering, 82 (2015) 207.
6 G. B. Kwon and T. W. Nam: J. Korea Foundry Soc., 25 (2005) 226.
7 L. N. Moskowitz: J. Therm. Spray Techn., 2 (1993) 21.   DOI
8 W. K. Yoon and S. H. Yang: Korea, KR 101394617 (2014).
9 H. Kang, Y. Kang and J. Lee: J. Powder Mater., 13 (2006) 18.   DOI
10 M. Magnani, P. H. Suegama, N. Espallargas, C. S. Fugivara, S. Dosta, J. M. Guilemany and A. V. Benedetti: J. Therm. Spray Techn., 18 (2009) 353.   DOI
11 P. Gavendova, J. Cizek, J. Cupera, M. Hasegawa and I. Dlouhy: Proc. Mat. Sci., 12 (2016) 89.   DOI
12 M. Oksa, E. Turunen, T. Suhonen, T. Varis and S. Hannula: Coatings, 1 (2011) 17.   DOI
13 T. Takemoto, I. Okamoto and J. Matsumura: Trans. J.W.R.I., 16 (1987) 301.
14 M. B. Karamis, A. Tasdemirci and F. Nair: J. Mater. Process. Tech., 141 (2003) 302.   DOI
15 A. Valarezo, W. B. Choi, W. Chi, A. Gouldstone and S. Sampath: J. Therm. Spray Tech., 19 (2010) 852.   DOI
16 N. M. Noordin and K. Y. Cheong: Procedia Eng., 184 (2017) 611.   DOI
17 H. Yu, Y. Sun, S. P. Alpay and M. Aindow: J. Mater. Sci., 50 (2015) 324.   DOI