• 제목/요약/키워드: High step-up voltage gain

검색결과 40건 처리시간 0.018초

High Step-up DC-DC Converter by Switched Inductor and Voltage Multiplier Cell for Automotive Applications

  • Divya Navamani., J;Vijayakumar., K;Jegatheesan., R;Lavanya., A
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.189-197
    • /
    • 2017
  • This paper elaborates two novel proposed topologies (type-I and type-II) of the high step-up DC-DC converter using switched inductor and voltage multiplier cell. The advantages of these proposed topologies are the less voltage stress on semiconductor devices, low device count, high power conversion efficiency, high switch utilization factor and high diode utilization factor. We analyze the Type-II topologies operating principle and mathematical analysis in detail in continuous conduction mode. High-intensity discharge lamp for the automotive application can use the derived topologies. The proposed converters give better performance when compared to the existing types. Also, it is found that the proposed type-II converter has relatively higher voltage gain compared to the type-I converter. A 40 W, 12 V input voltage and 72 V output voltage has developed for the type-II converter and the performances are validated.

고효율 및 고변압비를 가진 새로운 비절연형 컨버터 (A Novel Non-Isolated DC-DC Converter with High Efficiency and High Step-Up Voltage Gain)

  • Amin, Saghir;Tran, Manh Tuan;Choi, Woojin
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2019년도 전력전자학술대회
    • /
    • pp.11-13
    • /
    • 2019
  • This paper proposes a novel high step-up non-isolated DC-DC converter, suitable for regulating dc bus in various inherent low voltage micro sources especially for photovoltaic (PV) and fuel cell sources. This novel high voltage Non-isolated Boost DC-DC converter topology is best replacement, where high voltage conversion ratio is required without the transformer and also need continuous input current. Since the proposed topology utilizes the stack-based structure, the voltage gain, and the efficiency are higher than other conventional non-isolated converters. Switches in this topology is easier to control since its control signal is grounding reference. Also, there is no need of extra gate driver and extra power supply for driver circuit, which reduces the cost and size of system. In order to show the feasibility and practicality of the proposed topology principle operation, steady state analysis and simulation result is presented and analyzed in detail. To verify the performance of proposed converter and theoretical analysis 360W laboratory prototype is implemented.

  • PDF

Two-Switch Non-Isolated Step-Up DC-DC Converter

  • Nguyen, Minh-Khai;Choi, Youn-Ok;Cho, Geum-Bae;Lim, Young-Cheol
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.651-661
    • /
    • 2018
  • This paper suggests a new non-isolated high voltage gain DC-DC converter with two switches. The proposed two-switch converter has the following characteristics: a high voltage gain, a continuous input current with a small ripple, a reduction in the size of the inductor, and a simple circuit with only a few elements. A theoretical analysis, guidelines for parameter selection, and a comparison with conventional non-isolated high step-up converters are presented. A prototype of 250 W is set up to demonstrate the correctness of the proposed converter. Results obtained from simulations and experiments are presented.

친환경 자동차 HDC를 위한 고승압 소프트스위칭 양방향 컨버터 (High Gain Soft switching Bi-directional Converter for Eco-friendly Vehicle HDC)

  • 오세철;박준성;권민호;최세완
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.322-329
    • /
    • 2012
  • This paper proposes a non-isolated bidirectional soft-switching converter with high voltage for high step-up/down and high power applications. Compared to the conventional boost converter the proposed converter can achieve approximately doubled voltage gain using the same duty cycle. The voltage ratings of the switch and diode are reduced to half, which result in the use of devices with lower $R_{DS(ON)}$ and on drop leading to reduced conduction losses. Also, voltage ratings of the passive components are reduced, and therefore the total energy volume is reduced to half. Further, the switch is turned on with ZVS in the CCM operation which results in negligible surge caused leading to reduced switching losses. The validity of the proposed converter is proved through a 10kW prototype.

A Non-isolated High Step-up DC/DC Converter with Low EMI and Voltage Stress for Renewable Energy Applications

  • Baharlou, Solmaz;Yazdani, Mohammad Rouhollah
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1187-1194
    • /
    • 2017
  • In this paper, a high step-up DC-DC PWM converter with continuous input current and low voltage stress is presented for renewable energy application. The proposed converter is composed of a boost converter integrated with an auxiliary step-up circuit. The auxiliary circuit uses an additional coupled inductor and a balancing capacitor with voltage doubler and switching capacitor technique to achieve high step-up voltage gain with an appropriate switch duty cycle. The switched capacitors are charged in parallel and discharged in series by the coupled inductor, stacking on the output capacitor. In the proposed converter, the voltage stress on the main switch is clamped, so a low voltage switch with low ON resistance can be used to reduce the conduction loss which results in the efficiency improvement. A detailed discussion on the operating principle and steady-state analyses are presented in the paper. To justify the theoretical analysis, experimental results of a 200W 40/400V prototype is presented. In addition, the conducted electromagnetic emissions are measured which shows a good EMC performance.

Novel High Step-Up DC/DC Converter Structure Using a Coupled Inductor with Minimal Voltage Stress on the Main Switch

  • Moradzadeh, Majid;Hamkari, Sajjad;Zamiri, Elyas;Barzegarkhoo, Reza
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2005-2015
    • /
    • 2016
  • A high-step-up DC/DC converter for renewable energy systems is proposed. The proposed structure provides high voltage gain by using a coupled inductor without the need for high duty cycles and high turn ratios. The voltage gain is increased through capacitor-charging techniques. In the proposed converter, the energy of the leakage inductors of the coupled inductor is reused. This feature reduces the stress on the switch. Therefore, a switch with low ON-state resistance can be used in the proposed converter to reduce losses and increase efficiency. The main switch is placed in series with the source. Therefore, the converter can control the energy flow from the source to the load. The operating principle is discussed in detail, and a steady state analysis of the proposed converter is conducted. The performance of the proposed converter is verified by experimental results.

A new interleaved high step up converter with low voltage stress on the main switches

  • Tohidi, Babak;Delshad, Majid;Saghafi, Hadi
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.521-531
    • /
    • 2020
  • In this paper, a new interleaved high step-up converter with low voltage stress on the switches is proposed. In the proposed converter, soft switching is provided for all switches by just one auxiliary switch, which decreases the conduction loss of auxiliary circuit. Also, the auxiliary circuit is expanded on the converter with more input branches. In the converter all main switches operate under zero voltage switching condition and auxiliary switch operate under zero current switching condition. Because of the interleaved structure, the reliability of converter increases and input current ripples decreases. The clamp capacitor in the converter not only absorb the voltage spikes across the switch due to leakage inductance, but also improve voltage gain. The proposed converter is fully analyzed and to verify the theoretical analysis, a 100 W prototype was implemented. Also, to show the effectiveness of auxiliary circuit on conduction EMI, EMI of the proposed converter comprised with hard switching counterpart.

Innovative step-up direct current converter for fuel cell-based power source to decrease current ripple and increase voltage gain

  • Salary, Ebrahim;Falehi, Ali Darvish
    • ETRI Journal
    • /
    • 제44권4호
    • /
    • pp.695-707
    • /
    • 2022
  • As for the insufficient nature of the fossil fuel resources, the renewable energies as alternative fuels are imperative and highly heeded. To deliver the required electric power to the industrial and domestic consumers from DC renewable energy sources like fuel cell (FC), the power converter operates as an adjustable interface device. This paper suggests a new boost structure to provide the required voltage with wide range gain for FC power source. The proposed structure based on the boost converter and the quazi network, the so-called SBQN, can effectively enhance the FC functionality against its high operational sensitivity to experience low current ripple and also propagate voltage and current with low stress across its semiconductors. Furthermore, the switching power losses have been decreased to make this structure more durable. A full operational analysis of the proposed SBQN and its advantages over the conventional and famous structures has been compared and explained. Furthermore, a prototype of the single-phase converter has been constructed and tested in the laboratory.

A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

  • Hu, Xuefeng;Zhang, Meng;Li, Yongchao;Li, Linpeng;Wu, Guiyang
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.590-600
    • /
    • 2017
  • This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

A Novel Switched Capacitor High Step-up dc/dc Converter Using a Coupled Inductor with its Generalized Structure

  • Hamkari, Sajjad;Moradzadeh, Majid;Zamiri, Elyas;Nasir, Mehdi;Hosseini, Seyed Hossein
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.579-589
    • /
    • 2017
  • In this study a new high step-up dc-dc converter is presented. The operation of the proposed converter is based on the capacitor switching and coupled inductor with a single active power switch in its structure. A passive voltage clamp circuit with two capacitors and two diodes is used in the proposed converter for elevating the converter's voltage gain with the recovered energy of the leakage inductor, and for lowering the voltage stress on the power switch. A switch with a low $R_{DS}$ (on) can be adopted to reduce conduction losses. In the generalized mode of the proposed converter, to reach a desired voltage gain, capacitor stages with parallel charge and series discharge techniques are extended from both sides of secondary side of the coupled inductor. The proposed converter has the ability to alleviate the reverse recovery problem of diodes with circuit parameters. The operating principle and steady-states analyses are discussed in detail. A 40W prototype of the proposed converter is implemented in the laboratory to verify its operation.