DOI QR코드

DOI QR Code

A Ripple-free Input Current Interleaved Converter with Dual Coupled Inductors for High Step-up Applications

  • Hu, Xuefeng (School of Electrical Engineering, Anhui University of Technology) ;
  • Zhang, Meng (School of Electrical Engineering, Anhui University of Technology) ;
  • Li, Yongchao (School of Electrical Engineering, Anhui University of Technology) ;
  • Li, Linpeng (School of Electrical Engineering, Anhui University of Technology) ;
  • Wu, Guiyang (School of Electrical Engineering, Anhui University of Technology)
  • Received : 2016.08.09
  • Accepted : 2017.01.23
  • Published : 2017.05.20

Abstract

This paper presents a ripple-free input current modified interleaved boost converter for high step-up applications. By integrating dual coupled inductors and voltage multiplier techniques, the proposed converter can reach a high step-up gain without an extremely high turn-ON period. In addition, a very small auxiliary inductor employed in series to the input dc source makes the input current ripple theoretically decreased to zero, which simplifies the design of the electromagnetic interference (EMI) filter. In addition, the voltage stresses on the semiconductor devices of the proposed converter are efficiently reduced, which makes high performance MOSFETs with low voltage rated and low resistance $r_{DS}$(ON) available to reduce the cost and conduction loss. The operating principles and steady-state analyses of the proposed converter are introduced in detail. Finally, a prototype circuit rated at 400W with a 42-50V input voltage and a 400V output voltage is built and tested to verify the effectiveness of theoretical analysis. Experimental results show that an efficiency of 95.3% can be achieved.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of Anhui Province of China, Natural Science Foundation of Anhui Education Committee, National Natural Science Foundation

References

  1. S. K. Changchien, T. J. Liang, J. F. Chen, and L. S. Yang, "Novel high step-up DC-DC converter for fuel cell energy conversion system," IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2007-2017, Jun. 2010. https://doi.org/10.1109/TIE.2009.2026364
  2. S. M. Chen, T. J. Liang, L. S. Yang, and J. F. Chen, "A cascaded high step-up DC-DC converter with single switch for microsource applications," IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1146-1153, Apr. 2011. https://doi.org/10.1109/TPEL.2010.2090362
  3. Ling, Rui, G. Zhao, and Q. Huang. "High step-up interleaved boost converter with low switch voltage stress," Electric Power Systems Research, Vol. 128, pp. 11-18, Nov. 2015. https://doi.org/10.1016/j.epsr.2015.06.016
  4. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, and E. F. Romaneli, "Voltage multiplier cells applied to non-isolated DC-DC converters," IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871-887, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915762
  5. X. Yu, C. Cecati, T. Dillon, and M. G. Simoes, "The new frontier of smart grids," IEEE Ind. Electron. Mag., Vol. 5, No. 3, pp. 49-63, Sep. 2011. https://doi.org/10.1109/MIE.2011.942176
  6. Q. Luo, Y. Zhang, P. Sun, and L. Zhou, "An active clamp high step-up boost converter with a coupled inductor," Journal of Power Electronics, Vol. 15, No. 1, pp. 86-95, Jan. 2015. https://doi.org/10.6113/JPE.2015.15.1.86
  7. B. Yang, W. Li, Y. Zhao, and X. He, "Design and analysis of a grid-connected photovoltaic power system," IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 992-1000, Apr. 2010. https://doi.org/10.1109/TPEL.2009.2036432
  8. T. F. Wu, Y. S. Lai, J. C. Hung, and Y. M. Chen, "Boost converter with coupled inductors and buck-boost type of active clamp," Industry Applications Conference, Vol. 1, pp. 639-644, 2005.
  9. Q. Zhao, and F. C. Lee, "High-efficiency, high step-up DC-DC converters," IEEE Trans. Power Electron., Vol. 18, No. 1, pp. 65-73, Jan. 2003. https://doi.org/10.1109/TPEL.2002.807188
  10. R.-J. Wai, and R.-Y. Duan, "High-efficiency DC/DC converter with high voltage gain," IEE Proceedings Electric Power Applications, Vol. 152, No. 4, pp. 793-802, Jul. 2005. https://doi.org/10.1049/ip-epa:20045067
  11. T. J. Liang, and K. C. Tseng, "Analysis of integrated boost-flyback step-up converter," IEE Proceedings Electric Power Applications, Vol. 152, No. 2, pp. 217-225, Mar. 2005. https://doi.org/10.1049/ip-epa:20045003
  12. Y. P. Hsieh, J. F. Chen, T. J. Liang, and L. S. Yang, "Novel high step-up DC-DC converter with coupled-inductor and switched-capacitor techniques," IEEE Trans. Ind. Electron., Vol. 59, No. 2, pp. 998-1007, Feb. 2012. https://doi.org/10.1109/TIE.2011.2151828
  13. C. Y. Inaba, Y. Konishi, and M. Nakaoka, "High frequency PWM controlled step-up chopper type DC-DC power converters with reduced peak switch voltage stress," IEE Proceedings Electric Power Applications, Vol. 151, No. 1, pp. 47-52, Jan. 2004. https://doi.org/10.1049/ip-epa:20031059
  14. D. Y. Jung, Y. H. Ji, S. H. Park, and Y. C. Jung, "Interleaved soft-switching boost converter for photovoltaic power-generation system," IEEE Trans. Power Electron., Vol. 26, No. 4, pp. 1137-1145, Apr. 2011. https://doi.org/10.1109/TPEL.2010.2090948
  15. P. W. Lee, Y. S. Lee, D. K. W. Cheng, and X. C. Liu, "Steady-state analysis of an interleaved boost converter with coupled inductors," IEEE Trans. Ind. Electron., Vol. 47, No. 4, pp. 787-795, Aug. 2000. https://doi.org/10.1109/41.857959
  16. Wuhua Li, and Xiangning "A family of interleaved DC-DC converters deduced from a basic cell with winding-cross-coupled inductors (WCCIs) for high step-up or step-down conversions," IEEE Trans. Power Electron., Vol. 23, No. 4, pp. 1791-1801, Jul. 2008. https://doi.org/10.1109/TPEL.2008.925204
  17. R. Giral, L. Martinez-Salamero, R. Leyva, and J. Maixe, "Sliding-mode control of interleaved boost converters," IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., Vol. 47, No. 9, pp. 1330-1339, Sep. 2000. https://doi.org/10.1109/81.883328
  18. L. S. Yang, T. J. Liang, and J. F. Chen, "Transformerless DC-DC converters with high step-up voltage gain," IEEE Trans. Ind. Electron., Vol. 56, No. 8, pp. 3144-3152, Aug. 2009. https://doi.org/10.1109/TIE.2009.2022512
  19. M. Prudente, L. L. Pfitscher, G. Emmendoerfer, and E. F. Romaneli, "Voltage multiplier cells applied to non-isolated DC-DC converters," IEEE Trans. Power Electron., Vol. 23, No. 2, pp. 871-887, Mar. 2008. https://doi.org/10.1109/TPEL.2007.915762
  20. Dwari, Suman, and L. Parsa, "An efficient high-step-up interleaved DC-DC converter with a common active clamp," IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 66-78, Jan. 2014. https://doi.org/10.1109/TPEL.2010.2051816
  21. G. A. L. Henn, R. N. A. L. Silva, P. P. Praça, and L. H. S. C. Barreto, "Interleaved-boost converter with high voltage gain," IEEE Trans. Power Electron., Vol. 25, No. 11, pp. 2753-2761, Nov. 2010. https://doi.org/10.1109/TPEL.2010.2049379
  22. K. C. Tseng, C. T. Chen, and C. A. Cheng, "A high-efficiency high step-up interleaved converter with a voltage multiplier for electric vehicle power management applications," Journal of Power Electronics, Vol. 16, No. 2, pp. 414-424, Jan. 2016. https://doi.org/10.6113/JPE.2016.16.2.414
  23. X. F. Hu, and C. Gong, "A high gain input-parallel output-series DC/DC converter with dual coupled inductors," IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1306-1317, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2315613
  24. K. C. Tseng, C. C. Huang, and W. Y. Shih, "A high step-up converter with a voltage multiplier module for a photovoltaic system," IEEE Trans. Power Electron., Vol. 28, No. 6, pp. 3047-3057, Jun. 2013. https://doi.org/10.1109/TPEL.2012.2217157
  25. C. M. Lai, C. T. Pan, and M. C. Cheng, "High-efficiency modular high step-up interleaved boost converter for DC-microgrid applications," IEEE Trans. Ind. Appl., Vol. 48, No. 1, pp. 161-171, Jan/Feb. 2012. https://doi.org/10.1109/TIA.2011.2175473
  26. W. Li, Y. Zhao, Y. Deng, and X. He, "Interleaved converter with voltage multiplier cell for high step-up and high-efficiency conversion," IEEE Trans. Power Electron., Vol. 25, No. 9, pp. 2397-2408, Sep. 2010. https://doi.org/10.1109/TPEL.2010.2048340