Browse > Article
http://dx.doi.org/10.4218/etrij.2021-0128

Innovative step-up direct current converter for fuel cell-based power source to decrease current ripple and increase voltage gain  

Salary, Ebrahim (Department of Electrical Engineering, Islamic Azad University)
Falehi, Ali Darvish (Department of Electrical Engineering, Islamic Azad University)
Publication Information
ETRI Journal / v.44, no.4, 2022 , pp. 695-707 More about this Journal
Abstract
As for the insufficient nature of the fossil fuel resources, the renewable energies as alternative fuels are imperative and highly heeded. To deliver the required electric power to the industrial and domestic consumers from DC renewable energy sources like fuel cell (FC), the power converter operates as an adjustable interface device. This paper suggests a new boost structure to provide the required voltage with wide range gain for FC power source. The proposed structure based on the boost converter and the quazi network, the so-called SBQN, can effectively enhance the FC functionality against its high operational sensitivity to experience low current ripple and also propagate voltage and current with low stress across its semiconductors. Furthermore, the switching power losses have been decreased to make this structure more durable. A full operational analysis of the proposed SBQN and its advantages over the conventional and famous structures has been compared and explained. Furthermore, a prototype of the single-phase converter has been constructed and tested in the laboratory.
Keywords
current ripple; DC-based RESs; fuel cell; high step-up voltage; SBQN; voltage stress;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 A. Ho and T. Chun, Single-phase modified quasi-Z-source cascaded hybrid five-level inverter, IEEE Trans. Ind. Electron., 65 (2018), 5125-5134, https://doi.org/10.1109/TIE.2017.2779419   DOI
2 L. He, Z. Zheng, and D. Guo, High step-up DC-DC converter with active soft-switching and voltage-clamping for renewable energy systems, IEEE Transact. Pwr. Electron., 33 (2018), no. 11, 9496-9505, https://doi.org/10.1109/TPEL.2018.2789456   DOI
3 H. Liu, F. Li, and J. Ai, A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system, IEEE Trans. Power Electron., 31 (2016), no. 6. https://doi.org/10.1109/TPWRD.2016.2642498   DOI
4 N. Bizon, Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses, Renew. Sustain. Energy Rev., 105 (2019), 14-37, https://doi.org/10.1016/j.rser.2019.01.044   DOI
5 A. K. Doddathimmaiah and J. Andrews, Theory, modelling and performance measurement of unitised regenerative fuel cells, Int. J. Hydrogr. Energy, 34 (2009), no. 19, 8157-8170, https://doi.org/10.1016/j.ijhydene.2009.07.116   DOI
6 D. Thirumalai and R. E. White, Mathematical modeling of proton-exchange-membrane fuel-cell stacks, J. Electrochem. Soc., 144 (1997), no. 5, 1717-1723, https://doi.org/10.1149/1.1837667   DOI
7 A. Mirzaei, M. Rezvanyvardom, and M. Taati, High step-up fully soft switched interleaved Sheppard-Taylor converter with only one auxiliary switch for PV application, Sol. Energy, 177 (2019), 455-463, https://doi.org/10.1016/j.solener.2018.11.054   DOI
8 M. Abirami, R. Denny, G. Kanimozhi, and K. Logavani, A novel hybrid DC/DC and modified quasi Z-source converter for enhanced voltage gain, Mater. Today Proc., (2020), https://doi.org/10.1016/j.matpr.2020.10.253   DOI
9 F. Calise, G. D. di Vastogirardi, M. D. d'Accadia, and M. Vicidomini, Simulation of polygeneration systems, Energy 163 (2018), 290-337. https://doi.org/10.1016/j.energy.2018.08.052   DOI
10 C. S. Lai and M. D. McCulloch, Sizing of stand-alone solar PV and storage system with anaerobic digestion biogas power plants, IEEE Trans. Ind. Electron., 64 (2017), 2112-2121, https://doi.org/10.1109/TIE.2016.2625781   DOI
11 A. D. D. Falehi and H. Torkaman, Robust fractional-order super-twisting sliding mode control to accurately regulate lithium-battery/super-capacitor hybrid energy storage system, Int. J. Energy Res., 45 (2021), no. 13, 18590-18612, https://doi.org/10.1002/er.7045   DOI
12 A. D. Falehi, Half-cascaded multilevel inverter coupled to photovoltaic power source for AC-voltage synthesizer of dynamic voltage restorer to enhance voltage quality, Int. J. Numer. Modell. Electron. Netw. Devices Fields, 34 (2021), no. 5, e2883, https://doi.org/10.1002/jnm.2883   DOI
13 K. T. Lee, H. S. Yoon, and E. D. Wachsman, The evolution of low temperature solid oxide fuel cells, J. Mater. Res., 27 (2012), no. 16, 2063-2078, https://doi.org/10.1557/jmr.2012.194   DOI
14 D. Ghaderi, S. Padmanaban, P. K. Maroti, B. Papari, and J. B. Holm-Nielsen, Design and implementation of an improved sinusoidal controller for a two-phase enhanced impedance source boost inverter, Comput. Electr. Eng., 83 (2020), 106575.   DOI
15 S. Patra, N. Kishor, S. R. Mohanty, and P. K. Ray, Power quality assessment in 3-Ф grid connected PV system with single and dual stage circuits, Int. J. Electr. Power Energy Syst. 75 (2016), 275-288. https://doi.org/10.1016/j.ijepes.2015.09.014   DOI
16 O. Ellabban, J. V. Van Mierlo, and P. Lataire, Control of a high-performance Z-source inverter for fuel cell/supercapacitor hybrid electric vehicles, World Electr. Veh. J., 4 (2011), no. 3, 444-451, https://doi.org/10.3390/wevj4030444   DOI
17 M. G. Varzaneh, A. Rajaei, and M. Mardaneh, Dual-source inverter for hybrid PV-FC application, S.N. Appl. Sci., 1 (2019), 1-11, https://doi.org/10.1007/s42452-018-0001-3   DOI
18 M. J. J. Kouhanjani, A. R. Seifi, and M. Mehrtash, Dynamic model and small signal analysis of Z-source inverter, IETE J. Res., 65 (2019), 342-350, https://doi.org/10.1080/03772063.2018.1432421   DOI
19 M. A. Qureshi, I. Ahmad, and F. Munir, Double integral sliding mode control of continuous gain four quadrant quasi-Z-source converter, IEEE Access, 6 (2018), 77785-77795, https://doi.org/10.1109/ACCESS.2018.2884092   DOI
20 J. Liu, J. Wu, J. Qiu, and J. Zeng, Switched Z-source/quasi-Z-Source DC-DC converters with reduced passive components for photovoltaic systems, IEEE Access, 7 (2019), 40893-40903, https://doi.org/10.1109/ACCESS.2019.2907300   DOI
21 L. He, Z. Z. Zheng, and D. Guo, Soft-switching voltage-demultiplier-cell-based high step-down DC-DC converter, IEEE Trans. Power Electron., 33 (2018), no. 11, 9496-9505, https://doi.org/10.1109/TPEL.2018.2789456   DOI
22 A. D. Darvish Falehi and M. Rafiee, Optimal control of novel fuel cell-based DVR using ANFISC-MOSSA to increase FRT capability of DFIG-wind turbine, Soft Comput., 23 (2019), no. 15, 6633-6655, https://doi.org/10.1007/s00500-018-3312-9   DOI
23 A. E. Lutz, R. S. Larson, and J. O. Keller, Thermodynamic comparison of fuel cells to the Carnot cycle, Int. J. Hydrogen Energy, 27 (2002), no. 10, 1103-1111, https://doi.org/10.1016/S0360-3199(02)00016-2   DOI
24 A. D. Falehi, Optimal fractional order BELBIC to ameliorate small signal stability of interconnected hybrid power system, Environ. Prog. Sustain. Energy, 38 (2019), 18590-18612.
25 E. Salary, M. R. Banaei, and A. Ajami, Design of novel step-up boost DC/DC converter, Iran. J. Sci. Technol. Trans. Electr. Eng., 41 (2017), 13-22, https://doi.org/10.1007/s40998-017-0014-8   DOI
26 T. V. Kusumadewi, P. Winyuchakrit, and B. Limmeechokchai, Long-term CO2 emission reduction from renewable energy in power sector: The case of Thailand in 2050, Energy Procedia, 138 (2017), 961-966, https://doi.org/10.1016/j.egypro.2017.10.089   DOI
27 L. He, J. Chen, X. Xu, B. Cheng, J. Sun, D. Guo, and J. Nai, Soft-switching voltage-Demultiplier-cell-based high step-down DC-DC converter, IEEE Trans. Power Electron., 34 (2019), no. 10, 9828-9843, https://doi.org/10.1109/TPEL.2019.2895672   DOI
28 M. S. Shen, A. Joseph, J. Wang, F. Z. Peng, and D. J. Adams, Comparison of traditional inverters and Z-source inverter for fuel cell vehicles, IEEE Trans. Power Electron., 22 (2007), no. 4, 1453-1463, https://doi.org/10.1109/TPEL.2007.900505   DOI
29 T. Li and Q. Cheng, Structure analysis and sliding mode control of new dual quasi-Z-source inverter in a microgrid, Int. Trans. Electr. Energ. Syst., 29 (2019), no. 1. https://doi.org/10.1002/etep.2662   DOI
30 A. B. Rey-Boue, F. Martinez-Rodrigo, N. F. Guerrero-Rodriguez, L. C. Herrero-de Lucas, and S. de Pablo, Enhanced controller for grid-connected modular multilevel converters in distorted utility grids, Electr. Pow. Syst. Res., 163 (2018), 310-327, https://doi.org/10.1016/j.epsr.2018.06.011   DOI
31 N. Ozturk, O. Kaplan, and E. Celik, Zero-current switching technique for constant voltage constant frequency sinusoidal PWM inverter, Electr. Eng., 100 (2018), 1147-1157, https://doi.org/10.1007/s00202-017-0577-4   DOI
32 M. Shen, J. Wang, A. Joseph, F. Z. Peng, L. M. Tolbert, and D. J. Adams, Constant boost control of the Z-source inverter to minimize current ripple and voltage stress, IEEE Trans. Ind. Appl., 42 (2006), no. 3, 770-778, https://doi.org/10.1109/TIA.2006.872927   DOI
33 M. Zhu and F. L. Luo, Series SEPIC implementing voltage-lift technique for DC-DC power conversion, IET. Pwr. Electr., 1 (2008), 109-121, https://doi.org/10.1049/iet-pel:20060494   DOI
34 Z. Gao, L. V. Mogni, E. C. Miller, J. G. Railsback, and S. A. Barnett, A perspective on low-temperature solid oxide fuel cells, Energ. Environ. Sci., 9 (2016), no. 5, 1602-1644, https://doi.org/10.1039/C5EE03858H   DOI
35 A. K. Deepankar and S. K. Chauhan, Integrated dual-output L-Z source inverter for hybrid electric vehicle, IEEE Trans. Transp. Electrification, 4 (2018), no. 3, 732-743, https://doi.org/10.1109/TTE.2018.2846032   DOI
36 O. Ellabban and H. Abu-Rub, An overview for the Z-source converter in motor drive applications, Renew. Sustain. Energy Rev., 61 (2016), 537-555, https://doi.org/10.1016/j.rser.2016.04.004   DOI
37 M. Farhadi, M. Abapour, and M. Sabahi, Failure analysis and reliability evaluation of modulation techniques for neutral point clamped inverters-A usage model approach, Eng. Fail. Anal., 71 (2017), 90-104, https://doi.org/10.1016/j.engfailanal.2016.06.010   DOI
38 S. Rohner, S. Bernet, M. Hiller, and R. Sommer, Modulation, losses, and semiconductor requirements of modular multilevel converters, IEEE Trans. Ind. Electron., 57 (2010), no. 8, 2633-2642, https://doi.org/10.1109/TIE.2009.2031187   DOI
39 M. Lakshmi and S. Hemamalini, Coordinated control of MPPT and voltage regulation using single-stage high gain DC-DC converter in a grid-connected PV system, Electr. Pow. Syst. Res., 169 (2019), 65-73, https://doi.org/10.1016/j.epsr.2018.12.011   DOI
40 X. Ding, F. Chen, M. Du, H. Guo, and S. Ren, Effects of silicon carbide MOSFETs on the efficiency and power quality of a microgrid-connected inverter, Appl. Energy, 201 (2017), 270-283, https://doi.org/10.1016/j.apenergy.2016.10.011   DOI
41 P. Kumar and M. Veerachary, Analysis and design of quasi-Z-source equivalent DC-DC boost converters, IEEE J. Emerg. Selec. Top. Power Electr., 9 (2021), no. 1, 791-803, https://doi.org/10.1109/JESTPE.2019.2959078   DOI
42 S. G. Bratsch, Standard electrode potentials and temperature coefficients in water at 298.15 K, J. Phys. Chem. Ref. Data Monogr., 18 (1989), 1-21, https://doi.org/10.1063/1.555839   DOI
43 X. Zhu, B. Zhang, and K. Jin, Hybrid nonisolated active quasiswitched DC-DC converter for high step-up voltage conversion applications, IEEE Access, 8 (2020), 222584-222598, https://doi.org/10.1109/ACCESS.2020.3043816   DOI
44 M. Veerachary and P. Kumar, Analysis and design of quasi-Z-source equivalent DC-DC boost converters, IEEE Trans. Ind. Applicat., 56 (2020), 6642-6656, https://doi.org/10.1109/TIA.2020.3021372   DOI