• Title/Summary/Keyword: High pressure storage facility

Search Result 16, Processing Time 0.023 seconds

Design and Manufacture of the air mixing system for supersonic ground test facility (초음속 지상추진시험설비의 공기 혼합시스템 설계 및 제작)

  • Lee, Yagn-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-48
    • /
    • 2008
  • Air mixing system which is composed of air pressure control system, hot pipe system and air mixer, is the facility for mixing hot air($1000^{\circ}C$, 10kg/s) from storage air heater (SAH) and decompressed air($20^{\circ}C$, 15kg/s) from high pressure air supply system. Air pressure control system reduce the pressure of the air, from 32MPa to 3.5 MPa and supply the decompressed air to air mixer. The hot pipe system supply hot air from SAH to air mixer which mix hot with the decompressed air from air pressure control system. Fully mixed air flow rate is 25kg/s and mixed temperature is up to $400^{\circ}C$. So, we can expand the operating envelop of the supersonic ground test facility to low Mach number and low altitude region.

  • PDF

A Study on the Development of Computer Software for the Design of Fire Protection System (방화설비계통 설계용 전산소프트웨어 개발에 관한 연구)

  • 이정혜
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.275-284
    • /
    • 1998
  • Standard on the carbon dioxide extinguishing system was prepared by the committed of the national fire protection assocition(NFPA)in USA on 1980. And this code is also applied to the design of a marine fire extinguishing system The most important problem in design is the uniform discharge of $CO_2$ through each nozzle from the high pressure $CO_2$ storage facility. The purpose of this paper is to develop the computer software to design the marine fire protection piping system. By solving the continuity equation energy equation and Bernoulli's equation simulataneously the flowrate in branch pipelines and discharge nozzles can be calculated.

  • PDF

Design of the test facility for the supersonic thrust vectoring nozzle (초음속 추력편향 노즐 실험장치 설계)

  • Jeong, Han-Jin;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.569-572
    • /
    • 2010
  • In order to study the performance characteristics of the thrust vector nozzle, the test facility and instrumentation system were designed. In this system, axial thrust, moment, exhaust gas velocity and pressure will be measured by using the scale down experimental model devices. The test facility are composed of high pressure air storage system, flow measuring and control system, test nozzle and thrust measurement system.

  • PDF

Risk Analysis for Installation Types of Pressure Safety Valve used in the High-pressure Gas Facility (고압가스 사용시설 내 안전밸브 설치유형별 리스크 분석)

  • Kim, Myung-Chul;Woo, Jeong-Jae;Lee, Hyung-Sub;Baek, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.129-136
    • /
    • 2017
  • This study investigated the probability of possible accident through qualitative and quantitative analysis of the pressure safety valve types installed in facilities using high pressure gas to compare the installation domestic and foreign pressure safety valve standards sought the safety characteristics and safety improvement direction accordingly. The three types are the case where the shut-off valve is not installed at the front of the PSV (Case A), If a shut-off valve is installed at the front of the PSV for inspection (Case B) and If a shut-off valve is installed in front of PSV (C.S.O), PSV is installed in parallel (Case C). Three types of cases were compared with FTA and HAZOP. The results of study of the possible accidents due to over-pressure safety valve installation type, used in a high-pressure gas facilities was shows in the following order Case B > Case A > Case C. The results of analysis through FTA was in order to protect the reservoir for the possible occurring of accident the safety valve installation is depend on its type. In the FTA analysis, defects in the device itself which attached to the storage tank as a substitute for analysis of the probability of operator mistakes was Case B with as high as $2.01{\times}10^{-6}$. Depending on the type of installation analysis of Case B in order to ensure safety is prohibited to install shut-off valve and believes that mandatory regulations are needed. Rationally installing of pressure safety valve in the high pressure using facilities will be expected to improve the industrial safety from severe accidents such as high-pressure gas fire explosion.

Drying and Storage Characteristics of Small Scale Accumulated / Stirred Storage and Drying Bin (소형 교반식 저장건조빈의 벼 건조 및 저장 특성)

  • Park, Jong-Won;Ning, Xiao Feng;Cha, Yeong-Ok;Kang, Tae-Hwan;Han, Chung-Su;Cho, Sung-Chan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.195-203
    • /
    • 2011
  • Not only does the labor of manufacturers used most in the drying process after rice harvest, but it also is having huge influence in quality. Also, because drying storage of rice production around the whole country is scarce with original facility, it has become a very important matter that farms develop their own safe and high-quality facilities to store and dry rice. Therefore, this study developed a small scale accumulated storage and drying bin, assessed nalyzed drying properties, and conducted analysis of research on the property of quality when storing for a long time. As a result, the drying speed of the small scale accumulated storage and drying bin was adequate of 0.042%/hr and was shown that the experimental static pressure and theoretical static pressure corresponded. Also, it was shown that drying cost was up to about 6 times inexpensive that heated air drying. For the storage of the small scale accumulated storage and drying bin, average of moisture content was around 16.5 until early April and decreased to 15.7% in July. Inside storage was maintained to 12.13% until early April and slightly increased to 14% after May. It was shown that inside storage had higher hardness and rate of cracking than the small scale accumulated storage and drying bin by storage conditions and germination rate was shown a little higher when stored in the small scale accumulated storage and drying bin.

Technology Trends in Spent Nuclear Fuel Cask and Dry Storage (사용후핵연료 운반용기 및 건식저장 기술 동향)

  • Shin, Jung Cheol;Yang, Jong Dae;Sung, Un Hak;Ryu, Sung Woo;Park, Yeong Woo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.110-116
    • /
    • 2020
  • As the management plan for domestic spent nuclear fuel is delayed, the storage of the operating nuclear power plant is approaching saturation, and the Kori 1 Unit that has reached its end of operation life is preparing for the dismantling plan. The first stage of dismantling is the transfer of spent nuclear fuel stored in storage at plants. The spent fuel management process leads to temporary storage, interim storage, reprocessing and permanent disposal. In this paper, the technical issues to be considered when transporting spent fuel in this process are summarized. The spent fuels are treated as high-level radioactive waste and strictly managed according to international regulations. A series of integrity tests are performed to demonstrate that spent fuel can be safely stored for decades in a dry environment before being transferred to an intermediate storage facility. The safety of spent fuel transport container must be demonstrated under normal transport conditions and virtual accident conditions. IAEA international standards are commonly applied to the design of transport containers, licensing regulations and transport regulations worldwide. In addition, each country operates a physical protection system to reduce and respond to the threat of radioactive terrorism.

An Analysis of Safety Management Items for Low Pressure Hydrogen Facility below 0.1MPa in Domestic Hydrogen Town (국내 수소타운 내 0.1MPa 이하 저압 수소 사용시설의 안전관리 항목 분석)

  • Lee, Duk-Gwon;Heo, Doo-Hyun;Lee, Sun-Kyu;Lee, Jung-Woon;Lyu, Geun-Jun;Lee, Yeon-Jae;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.85-91
    • /
    • 2015
  • As the interest in hydrogen energy is being increased, it is a widely issue to develop a lot of hydrogen technologies in the field of production, storage, transportation, application and others. In the aftermath, there is a hydrogen town in Ul San, which is expected to expand application fields of hydrogen energy, as a demonstration project. The hydrogen town in Ul San can consist of high and low pressure part by the gas pressure. The high pressure part is managed by 'the high pressure gas safety control act'. And, low pressure part is managed by 'the guideline for the safety management of demonstration project of hydrogen town'. In this paper, to improve efficiency of safety management, the direction of safety management is reviewed by an analysis of low pressure hydrogen facility and safety management items. And then, some improvement directions are suggested. In the end, it is expected that the results of this study could help to activate construction of hydrogen town and improve efficiency of safety management as well.

Design and Construction Study of an Injection Facility for CO2 Offshore Storage (CO2 해상 지중저장을 위한 주입설비 설계 및 구축 연구)

  • Moon, Hung-Man;Kim, Hyo-Joon;Shin, Se-Jin;Lee, Yong-Il;Kwon, Si-Hyun;Kwon, Yi-Kyun
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.207-215
    • /
    • 2018
  • Almost all countries of the world have recently made great efforts to reduce green-house gases to alleviate the global warming threatening human survival, because a huge amount of carbon dioxide as one of the main green-house gases has been emitted from the combustion processes of fossil fuels such as coal and oil. $CO_2$ capture and storage (CCS) technology is a representative method to diminish the green-house gases, and actively investigated by many countries. This study focuses on the design and construction of a high pressure $CO_2$ injection facility to store it to underground, which is the first $CO_2$ injection in Korea following the steps of the $CO_2$ capture from large $CO_2$ emission sources and transportation to the sea. Injection tests of $CO_2$ on the platform on the sea were carried out in Yeongil Bay of Pohang city in the early 2017. Thus, we were able to perceive the necessary operating conditions of the injection facility, injection characteristic, and knowhow of the injection facility. The results obtained from the injection test shall be utilized for facility upgrades and scale-ups.

Risk Assessment of Tube Trailer Leaks at Hydrogen Charging Station (수소충전소 튜브트레일러 누출에 따른 위험성평가)

  • Park, Woo-Il;Yoon, Jin-Hee;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.57-62
    • /
    • 2021
  • In this study, risk assessment was conducted in case of leakage of storage facilities (tube trailer) using the HyKoRAM program developed through international joint research. The high-pressure gas facilities in the hydrogen filling station are divided into four main categories: storage facilities (tube trailers), processing facilities (compressors), compressed gas facilities, and filling facilities (dispensers). Among them, the design specifications of the tube trailer, which is a storage facility, and the surrounding environmental conditions were reflected to construct an accident scenario with previously occurring accidents and potential accidents. Through this, we identify the risks of storage facilities at hydrogen refueling stations and suggest measures to improve the safety of hydrogen charging stations.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.