Browse > Article
http://dx.doi.org/10.7843/kgs.2022.38.11.107

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility  

Go, Gyu-Hyun (Dept. of Civil Engineering, Kumoh National Institute of Tech.)
Jeon, Jun-Seo (Dept. of Geotech. Eng. Research, Korea Institute of Civil Engineering and Building Technology)
Kim, YoungSeok (Hydrogen-Infrastructure Research Cluster, Korea Institute of Civil Engineering and Building Technology)
Kim, Hee Won (Dept. of Civil Engineering, Kumoh National Institute of Tech.)
Choi, Hyun-Jun (Hydrogen-Infrastructure Research Cluster, Korea Institute of Civil Engineering and Building Technology)
Publication Information
Journal of the Korean Geotechnical Society / v.38, no.11, 2022 , pp. 107-118 More about this Journal
Abstract
The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.
Keywords
Hydro-mechanical analysis; Meta-model; Numerical analysis; Underground Hydrogen Storage;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Bai, M., Song, K., Sun, Y., He, M., Ki, Y., and Sun, J. (2014), "An Overview of Hydrogen Underground Storage Technology and Prospects in China", Journal of Petroleum Science and Engineering, Vol.124, pp.132-136.   DOI
2 Boit, M. A. (1962), "Mechanics of Deformation and Acoustic Propagation in Porous Media", Journal Applied Physics, Vol.33, pp.1482-1498.   DOI
3 Booker A. J., Dennis J. E., Frank P. D., Serafini D. B., Torczon V., and Trosset M. W. (1999), "A Rigorous Framework for Optimization of Expensive Functions by Surrogates", Structural optimization, Vol.17, No.1, pp.1-13.
4 Brooks, R. H. and Corey, A. T. (1966), "Properties of Porous Media Affecting Fluid Flow", Journal of the irrigation and drainage division, Vol.92, No.2, pp.61-88.   DOI
5 COMSOL Inc., Introduction to Comsol Multiphysics; COMSOL Inc.: Burlington, VT, USA, 2021.
6 CRIRO (2018), National Hydrogen Roadmap : Pathways to an Economically Sustainable Hydrogen Industry in Australia.
7 Ebigbo, A., Golfier, F., and Quintard, M. (2013), "A Coupled, Pore-scale Model for Methanogenic Microbial Activity in Underground Hydrogen Storage", Advances in water resources, Vol.61, pp.74-85.   DOI
8 FCH JU (2019), Hydrogen Roadmap Europe, pp.4-77.
9 Gawin, D., Baggio, P., and Schrefler, B. A. (1995), "Coupled Heat, Water and Gas Flow in Deformable Porous Media", International Journal for numerical methods in fluids, Vol.20, No.8-9, pp.969-987.   DOI
10 Go, G. H., Lee, J., and Kim, M. (2020), "Influencing Factors on Freezing Characteristics of Frost Susceptible Soil Based on Sensitivity Analysis", J. of the Kor. Geotech. Soc., Vol.36, No.8, pp.49-60.   DOI
11 Hagemann, B., Rasoulzadeh, M., Panfilov, M., Ganzer, L., and Reitenbach, V. (2015), "Mathematical Modeling of Unstable Transport in Underground Hydrogen Storage", Environmental Earth Sciences, Vol.73, No.11, pp.6891-6898.   DOI
12 Han, A., Kim, T., Kwon. Y., and Koo, M. H. (2017), "Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2", Journal of Soil and Groundwater Enviromnent, Vol.22, No.3, pp.42-49.
13 Heinemann, N., Booth, M. G., Haszeldine, R. S., Wilkinson, M., Scafidi, J., and Edlmann, K. (2018), "Hydrogen Storage in Porous Geological Formations-onshore Play Opportunities in the Midland Valley (Scotland, UK)", International Journal of Hydrogen Energy, Vol.43, No.45, pp.20861-20874.   DOI
14 Hoffman R.M., Sudjianto A, Du X, Stout J. (2003), Robust piston design and optimization using piston secondary motion analysis (No. 2003-01-0148), SAE Technical Paper.
15 Heinemann, N., Alcalde, J., Miocic, J. M., Hangx, S. J., Kallmeyer, J., Ostertag-Henning, C., ... and Rudloff, A. (2021), "Enabling Large-scale Hydrogen Storage in Porous Media-the Scientific Challenges", Energy & Environmental Science, Vol.14, No.2, pp. 853-864.   DOI
16 Kang, S. G. and Huh, C. (2008), "The Latest Progress on the Development of Technologies for CO₂Storage in Marine Geological Structure and its Application in Republic of Korea", Journal of the Korean Society for Marine Environmental Engineering, Vol.11, No.1, pp.24-34.
17 Kim, A. R., Kim, H. M., Kim, H. W., and Shinn, Y. J. (2017), "Geomechanical Stability Analysis of Potential Site for Domestic Pilot CCS Project", Tunnel and Underground Space, Vol.27, No.2, pp.89-99.   DOI
18 Kim, K. Y., Kim, T., Kim, J. C., and Han, W. S. (2009), "Numerical Study on Pressure Variation due to Subsurface CO2 injection", Jornal of the Geological Society of Korea, Vol.45, No.5, pp.435-448.
19 Kim, S. K., Chan, C., Shinn, Y., and Kwon. Y. (2018), "Characteristics of Pohang CO2 Geological Sequenstration Test Site", The Journal of Engineering Geology, Vol.28, No.2, pp.175-182.
20 Klubertanz, G., Laloui, L., and Vulliet, L. (1997), Numerical modeling of unsaturated porous media as a two and three phase medium: a comparison, Computer Methods and Advances in Geomechanics, 2(CONF), 1159-1164.
21 Lankof, L. and Tarkowski, R. (2020), "Assessment of the Potential for Underground Hydrogen Storage in Bedded Salt Formation", International journal of hydrogen energy, Vol.45, No.38, pp.19479- 19492.   DOI
22 Lewis, R.W. and Schrefler, B.A. (1998), The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd Edition, Wiley.
23 Liakopoulos, A.C. (1964), Transient flow through unsaturated porous media, University of California, Berkeley.
24 Matheron, G. (1963), "Principles of Geostatistics", Economic geology, Vol.58, No.8, pp.1246-1266.   DOI
25 Michalski, J., Bunger, U., Crotogino, F., Donadei, S., Schneider, G. S., Pregger, T., ... and Heide, D. (2017), "Hydrogen Generation by Electrolysis and Storage in Salt Caverns: Potentials, Economics and Systems Aspects with Regard to the German Energy Transition", International Journal of Hydrogen Energy, Vol.42, No.19, pp. 13427-13443.   DOI
26 Ozarslan, A. (2012), "Large-scale Hydrogen Energy Storage in Salt Caverns", International journal of hydrogen energy, Vol.37, No.19, pp.14265-14277.   DOI
27 Park, S. G. and Cho, S. J. (2008), "Development of Experimental Apparatus for Carbon Dioxide Geological Storage", 2008 Korean Society of Earth and Exploration Geophysicist Conference, pp. 141-144, Oct. 09, 2008.
28 Shi, Z., Jessen, K., and Tsotsis, T. T. (2020), "Impacts of the Subsurface Storage of Natural Gas and Hydrogen Mixtures", International Journal of Hydrogen Energy, Vol.45, No.15, pp. 8757-8773.   DOI
29 Sainz-Garcia, A., Abarca, E., Rubi, V., and Grandia, F. (2017), "Assessment of Feasible Strategies for Seasonal Underground Hydrogen Storage in a Saline Aquifer", International journal of hydrogen energy, Vol.42, No.26, pp.16657-16666.   DOI
30 Schrefler, B. A. and Simoni, L. (2017), A unified approach to the analysis of saturated-unsaturated elastoplastic porous media. In Numerical Methods in Geomechanics Innsbruck 1988 (pp.205-212). Routledge.
31 Shin, H. (2011), "Formulation of Fully Coupled THM Behavior in Unsaturated Soil", J. of the Kor. Geotech. Soc., Vol.27, No.3, pp.75-83.   DOI
32 Shin, H. and Yoon, S. (2022), "Numerical Formulation of ThermoHydro-Mechanical Interface Element", J. of the Kor. Geotech. Soc., Vol.38, No.9, pp.45-52.
33 Simon, J., Ferriz, A. M., and Correas, L. C. (2015), "HyUnderhydrogen Underground Storage at Large Scale: Case Study Spain", Energy procedia, Vol.73, pp.136-144.   DOI
34 Tarkowski, R. and Czapowski, G. (2018), "Salt Domes in Polandpotential Sites for Hydrogen Storage in Caverns", International Journal of Hydrogen Energy, Vol.43, No.46, pp.21414-21427.   DOI
35 Taylor, J. B., Alderson, J. E. A., Kalyanam, K. M., Lyle, A. B., and Phillips, L. A. (1986), "Technical and Economic Assessment of Methods for the Storage of Large Quantities of Hydrogen", International Journal of Hydrogen Energy, Vol.11, No.1, pp.5-22.    DOI