• Title/Summary/Keyword: High mobility electron transistor

Search Result 165, Processing Time 0.025 seconds

Technological Trends of C-/X-/Ku-band GaN Monolithic Microwave Integrated Circuit for Next-Generation Radar Applications (차세대 레이더용 C-/X-/Ku-대역 GaN 집적회로 기술 동향)

  • Ahn, H.K.;Lee, S.H.;Kim, S.I.;Noh, Y.S.;Chang, S.J.;Jung, H.U.;Lim, J.W.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.5
    • /
    • pp.11-21
    • /
    • 2022
  • GaN (Gallium-Nitride) is a promising candidate material in various radio frequency applications due to its inherent properties including wide bandgap, high carrier concentration, and high electron mobility/saturation velocity. Notably, AlGaN/GaN heterostructure field effect transistor exhibits high operating voltage and high power-density/power at high frequency. In next-generation radar systems, GaN power transistors and monolithic microwave integrated circuits (MMICs) are significant components of transmitting and receiving modules. In this paper, we introduce technological trends for C-/X-/Ku-band GaN MMICs including power amplifiers, low noise amplifiers and switch MMICs, focusing on the status of GaN MMIC fabrication technology and GaN foundry service. Additionally, we review the research for the localization of C-/X-/Ku-band GaN MMICs using in-house GaN transistor and MMIC fabrication technology. We also discuss the results of C-/X-/Ku-band GaN MMICs developed at Defense Materials and Components Convergence Research Department in ETRI.

AlGaN/GaN Field Effect Transistor with Gate Recess Structure and HfO2 Gate Oxide (게이트 하부 식각 구조 및 HfO2 절연층이 도입된 AlGaN/GaN 기반 전계 효과 트랜지스터)

  • Kim, Yukyung;Son, Juyeon;Lee, Seungseop;Jeon, Juho;Kim, Man-Kyung;Jang, Soohwan
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.313-319
    • /
    • 2022
  • AlGaN/GaN based HfO2 MOSHEMT (metal oxide semiconductor high electron transistor) with different gate recess depth was simulate to demonstrate a successful normally-off operation of the transistor. Three types of the HEMT structures including a conventional HEMT, a gate-recessed HEMT with 3 nm thick AlGaN layer, and MIS-HEMT without AlGaN layer in the gate region. The conventional HEMT showed a normally-on characteristics with a drain current of 0.35 A at VG = 0 V and VDS = 15 V. The recessed HEMT with 3 nm AlGaN layer exhibited a decreased drain current of 0.15 A under the same bias condition due to the decrease of electron concentration in 2DEG (2-dimensional electron gas) channel. For the last HEMT structure, distinctive normally- off behavior of the transistor was observed, and the turn-on voltage was shifted to 0 V.

Eletrostatic Discharge Effects on AlGaN/GaN High Electron Mobility Transistor on Sapphire Substrate (사파이어 기판을 사용한 AlGaN/GaN 고 전자이동도 트랜지스터의 정전기 방전 효과)

  • Ha Min-Woo;Lee Seung-Chul;Han Min-Koo;Choi Young-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.3
    • /
    • pp.109-113
    • /
    • 2005
  • It has been reported that the failure phenomenon and variation of electrical characteristic due to the effect of electrostatic discharge(ESD) in silicon devices. But we had fess reports about the phenomenon due to the ESD in the compound semiconductors. So there are a lot of difficulty to the phenomenon analysis and to select the protection method of main circuits or the devices. It has not been reported that the relation between the ESD stress and GaN devices, which is remarkable to apply the operation in high temperature and high voltage due to the superior material characteristic. We studied that the characteristic variation of the AlGaN/GaN HEMT current, the leakage current, the transconductance(gm) and the failure phenomenon of device due to the ESD stress. We have applied the ESD stress by transmission line pulse(TLP) method, which is widely used in ESD stress experiments, and observed the variation of the electrical characteristic before and after applying the ESD stress. The on-current trended to increase after applying the ESD stress. The leakage current and transconductance were changed slightly. The failure point of device was mainly located in middle and edge sides of the gate, was considered the increase of temperature due to a leakage current. The GaN devices have poor thermal characteristic due to usage of the sapphire substrate, so it have been shown to easily fail at low voltage compared to the conventional GaAs devices.

A High Power 60 GHz Push-Push Oscillator Using Metamorphic HEMT Technology (Metamorphic HEMT를 이 용한 60 GHz 대역 고출력 Push-Push 발진기)

  • Lee Jong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.7 s.110
    • /
    • pp.659-664
    • /
    • 2006
  • This paper reports a high power 60 GHz push-push oscillator fabricated using $0.12{\mu}m$ metamorphic high electron-mobility transistors(mHEMTs). The devices with a $0.12{\mu}m$ gate-length exhibited good DC and RF characteristics such as a maximum drain current of 700 mA/mm, a peak gm of 660 mS/mm, an $f_T$ of 170 GHz, and an $f_{MAX}$ of more than 300 GHz. By combining two sub-oscillators having $6{\times}50{\mu}m$ periphery mHEMT, the push-push oscillator achieved a 6.3 dBm of output power at 59.5 GHz with more than - 35 dBc fundamental suppression. The phase noise of - 81.5 dBc/Hz at 1 MHz offset was measured. This is one of the highest output power obtained using mHEMT technology without buffer amplifier, and demonstrates the potential of mHEMT technology for cost effective millimeter-wave commercial applications.

Digital recess etching for advanced performance of 0.25$\mu\textrm{m}$­ Double-heterostructure AIGaAs/GaAs PHEMT (0-25 $\mu\textrm{m}$ gate Double-heterostructure AIGaAs/GaAs PHEMT의 성능향상을 위한 디지털 리세스에 대한 연구)

  • 류충식;장효은;범진욱
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.213-216
    • /
    • 2002
  • A double-heterostructure AIGaAs/GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor) using digital recess has been successfully realized. Futhermore, the differences of gm,nax, fT, fmax between two samples are as low as 0.62%, 1.58% and 2.56 % respectively. Experimental results are presented demonstrating the etch rate and Process invariability with respect to hydrogen peroxide and acid exposure times with uniformity among devices on a sample.

  • PDF

PHEMT MMIC Broad-Band Power Amplifier for LMDS (Ka 대역 광대역 MMIC 전력증폭기)

  • 백경식;김영기;맹성재;이진희;박철순
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.177-180
    • /
    • 1999
  • A two-stage monolithic microwave integrated circuits (MMIC) broad-band power amplifier with AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (PHEMT) has been developed for the up-link and down-link applications for local multipoint distribution systems (LMDS) in the frequency range of 24~28㎓. The amplifier has a small signal gain of 18.6㏈ at 24.5㎓ and 16.7㏈ at 27.1㎓. It achieved output powers of 19.8㏈m with PAE of 19.8% at 24.5㎓ and 18.8㏈m at 27.1㎓.

  • PDF

위성통신용 수신기의 설계

  • 정우영;백정기;최부귀
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.1 no.1
    • /
    • pp.119-233
    • /
    • 1996
  • 본 논문에서는 게이트의 길이가 0.25$\mu\textrm{m}$dlsGaAs HEMT(High Electron Mobility Transistor)를 이용하여 11.7GHz-12.2GHz 대역 위성통신용 수신기를 설계하였다. 설계된 수신기의 전체이득은 38dB 이상, 잡음지수 1.8dB 이하, 입출력단의 반사손실은 -10dB 이하를 보였다. 수신기는 저잡음증폭기(LNA), 중간주파수증폭기(IFA) , 믹서(Mixer), 국부발진기(LO) 로 구성되어 있으며 LO 주파수와 IF 주파수는 각각 10.75GHz 와 0.95GHz-1.45GHz이고 칩의 크기는 1.7mm $\times$2.5mm이다.

  • PDF

Photodetection Characteristics of InAlAs/InGaAs/InP HEMT (InAlAs/InGaAs/InP HEMT의 광검출 특성)

  • 강효순;최창순;최우영;장경철;서광석
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.146-147
    • /
    • 2003
  • 무선 통신 시스템이 발달하고 정보의 양이 많아짐에 따라 고주파를 이용한 통신 시스템에 대한 수요가 증가하고 있다. 최근 이러한 고주파 통신 시스템을 optical fiber를 이용하여 구현(Radio-on-fiber system)하는 연구가 주목받고 있다. 무선 고주파 통신 시스템에서는 많은 수의 안테나 기지국이 필요하게 되는데 optical fiber를 이용하면 적은 전송 손실로 기지국간의 연결이 가능하게 된다. 안테나 기지국의 구축을 위해서 최근 InP High Electron Mobility Transistor(HEMT)를 이용하여 광 검출을 구현하는연구가 활발히 진행되고 있다. (중략)

  • PDF

High Breakdown-Voltage AlGaN/GaN High Electron Mobility Transistor having a Trapezoidal Gate Structure (사다리꼴 게이트 구조를 갖는 고내압 AlGaN/GaN HEMT)

  • Kim, Jae-Moo;Kim, Su-Jin;Kim, Dong-Ho;Jung, Kang-MIn;Choi, Hong-Goo;Hahn, Cheol-Koo;Kim, Tae-Geun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.4
    • /
    • pp.10-14
    • /
    • 2009
  • We propose a trapezoidal gate AlGaN/GaN high electron mobility transistor(HEMT) to improve the breakdown voltage characteristics and its feasibility is investigated by two-dimensional device simulations. The use of a trapezoidal gate structure appears to be quite effective in dispersing the electric fields concentrated near the gate edge on the drain side from the simulation result. We find that a peak value of the electric field along the 2-DEG channel is reduced by 30%, from 4.8 to 3.5 MV/cm and thereby, the breakdown voltage(Vbr) of the proposed AlGaN/GaN HEMT is increased by about 40%, from 49 to 69 V, compared to those of the standard AlGaN/GaN HEMT.