• Title/Summary/Keyword: High Resolution TEM

Search Result 165, Processing Time 0.023 seconds

Preparation of Ag-PS and Ag-PSS Particles by ${\gamma}$-Irradiation and Their Antimicrobial Efficiency against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352

  • Oh Seong-Dae;Byun Bok-Soo;Lee Seung-Ho;Choi Seong-Ho
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.194-198
    • /
    • 2006
  • Polystyrene, PS, particles of 450 nm diameter and poly(styrene-co-styrene sulfonate), PSS, particles of 140-160 nm diameter were prepared by emulsifier-free emulsion polymerization. The surfaces of the PS and PSS particles were coated with Ag nanoparticles for the application of antimicrobial agents by reduction of Ag ions using ${\gamma}$-irradiation. The Ag-PS and Ag-PSS were characterized by High-Resolution Transmittance Electron Microscopy (HR-TEM), Field-Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDXS). The HR-TEM and EDXS data showed that the Ag nanoparticles were loaded on the surface of the PS and PSS particles, respectively. The antimicrobial efficiency of the Ag-PS and Ag-PSS particles (0.4 g) with ca. 100 ppm Ag, which was coated onto yam (KS K 0905-1996 rule), was tested against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352 after 100 washing cycles (KS K 0432-1999 rule). The antimicrobial efficiency of the Ag-PS particles against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352 was 99.9% after 100 cycles washing., confirming that the Ag-PS particles can be used as antimicrobial agents.

Microstructure of Nanocrystalline Electrolytic $MnO_2$ (EMD) (Nanocrystalline Electrolytic $MnO_2$ (EMD)의 미세구조 연구)

  • ;Anqiang He;Arthur H. Heuer
    • Korean Journal of Crystallography
    • /
    • v.14 no.2
    • /
    • pp.79-83
    • /
    • 2003
  • The microstructure of bulk electrolytic MnO₂ (EMD) was studied using x-ray diffraction and transmission electron microscopy (TEM). The bulk sample showed a typical powder x-ray diffraction pattern of EMD materials. TEM study showed that the structure of EMD is present at two length scales;grains, ∼0.2 ㎛ in diameter, and ∼10 nm crystallites within the grain. The electron beam microdiffraction study revealed that each grain is an assemblage of multiphase with a common crystallographic orientation, and_that ∼50% of the crystallites are Ramsdellite, ∼30% are ε-MnO₂, and ∼15% are Pyrolusite. The {1120}peak located at about 67° in powder XRD pattern as well as a high-resolution electron microscope (HREM) image of (0001) plane support the existence of ε-MnO₂ phase.

Chloroplasts morphology investigation with diverse microscopy approaches and inter-specific variation in Laurencia species (Rhodophyta)

  • Paradas, Wladimir Costa;Andrade, Leonardo Rodrigues;Salgado, Leonardo Tavares;Collado-Vides, Ligia;Pereira, Renato Crespo;Amado-Filho, Gilberto Menezes
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.291-301
    • /
    • 2015
  • The present study described with different microscopy approaches chloroplasts lobes in Laurencia sensu latu (Rhodophyta) species and found inter-specific differences among them. Chloroplasts were investigated using confocal laser scanning microscopy (LSM), transmission electron microscopy (TEM) and high resolution scanning electron microscopy (HRSEM). Using and TEM and HRSEM images we distinguished chloroplasts with lobes than chloroplasts without lobes in Yuzurua poiteaui var. gemmifera (Harvey) M. J. Wynne and Laurencia dendroidea J. Agardh cortical cells. The LSM images showed chloroplasts lobes (CLs) with different morphologies, varying from thicker and longer undulated projections in Y. poiteaui var. and L. dendroidea to very small and thin tubules as in Laurencia translucida Fujii & Cordeiro-Marino. The diameter and length of CLs from Y. poiteaui var. and L. dendroidea were significantly higher than L. translucida CLs (p < 0.01). Based on LSM observations, we suggest that lobes morphology has a taxonomic validity only to characterize L. translucida species.

Synthesis of Palladium Nanocubes/Nanorods and Their Catalytic Activity for Heck Reaction of Iodobenzene

  • Ding, Hao;Dong, Jiling
    • Applied Microscopy
    • /
    • v.46 no.2
    • /
    • pp.105-109
    • /
    • 2016
  • Palladium has been used as a catalyst not only in Suzuki and Heck cross coupling reaction in organic chemistry, but also in automobile industry for the reduction of vehicle exhausts. The catalytic activity of Pd nanoparticles depends strongly on their size and exposed crystalline facets. In this study, the single crystalline palladium nanocubes/nanorods were prepared in the presence of polyvinyl pyrrolidone (PVP) and potassium bromide (KBr) using the polyol method. Selected area diffraction pattern and high-resolution transmission electron microscopy (TEM) were performed by TEM. The result shows that the ratio of KBr/PVP is the key factor to determine whether the product is cubes or rods. The as-prepared Pd nanocubes were highly uniform in both size and shape. The ordered packing structures including monolayer and multilayer can be fabricated via the rate-controlled evaporation of solution solvent. The catalytic activity of these Pd nanocubes towards heck reaction of iodobenzene with acrylate or acrylic acid was found to be higher than that of Pd nanorods. We suspect it is caused by the difference of energy state while Pd nanocubes is {100} plane and nanorods is {111} plane.

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Nano-thick Nickel Silicide and Polycrystalline Silicon on Glass Substrate with Low Temperature Catalytic CVD (유리 기판에 Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드와 결정질 실리콘)

  • Song, Ohsung;Kim, Kunil;Choi, Yongyoon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.660-666
    • /
    • 2010
  • 30 nm thick Ni layers were deposited on a glass substrate by e-beam evaporation. Subsequently, 30 nm or 60 nm ${\alpha}-Si:H$ layers were grown at low temperatures ($<220^{\circ}C$) on the 30 nm Ni/Glass substrate by catalytic CVD (chemical vapor deposition). The sheet resistance, phase, microstructure, depth profile and surface roughness of the $\alpha-Si:H$ layers were examined using a four-point probe, HRXRD (high resolution Xray diffraction), Raman Spectroscopy, FE-SEM (field emission-scanning electron microscopy), TEM (transmission electron microscope) and AES depth profiler. The Ni layers reacted with Si to form NiSi layers with a low sheet resistance of $10{\Omega}/{\Box}$. The crystallinty of the $\alpha-Si:H$ layers on NiSi was up to 60% according to Raman spectroscopy. These results show that both nano-scale NiSi layers and crystalline Si layers can be formed simultaneously on a Ni deposited glass substrate using the proposed low temperature catalytic CVD process.

Review on the structural understanding of the 10S myosin II in the era of Cryo-electron microscopy

  • Anahita Vispi Bharda;Hyun Suk Jung
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.9.1-9.5
    • /
    • 2022
  • The compact smooth muscle 10S myosin II is a type of a monomer with folded tail and the heads bending back to interact with each other. This inactivated form is associated with regulatory and enzymatic activities affecting myosin processivity with actin filaments as well as ATPase activity. Phosphorylation by RLC can however, shuttle myosin from the inhibited 10S state to an activated 6S state, dictating the equilibrium. Multiple studies contributed by TEM have provided insights in the structural understanding of the 10S form. However, it is only recently that the true potential of Cryo-EM in deciphering the intramolecular interactions of 10S myosin state has been realized. This has led to an influx of new revelations on the 10S inactivation, unfolding mechanism and association in various diseases. This study reviews the gradual development in the structural interpretation of 10S species from TEM to Cryo-EM era. Furthermore, we discuss the utility of Cryo-EM in future myosin 10S studies and its contribution to human health.

Migration of Nanoclay in Immiscible Polymer Blends

  • Kim, Yong-Kyoung;Ahn, Kyung-Hyun;Lee, Seung-Jong;Hong, Joung-Sook
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.366-366
    • /
    • 2006
  • Five sandwiched multilayers consisting of PBT(Polybutyleneterephthalate), PS(Polystyrene) and clay were prepared to investigate the migration mechanism of clay in the polymer blend system. Rheometry (RMS800) was used to apply well-defined shear on the above multilayer samples in order to well understand dominant factors controlling the migration. Applied shear force was enough to move clay tactoids to the interface, if either long time or high shear was available, but it was not sufficient to separate into individual platelets of clay. The morphology evolution was subsequently studied in term of scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM), respectively.

  • PDF

Study of Incipient Soot Particles with Measuring Methodologies (입자 측정방법을 통한 초기 수트입자 연구)

  • Lee Eui Ju
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2004
  • The physical characteristics of soot near the soot inception point were investigated with various measurements. In-situ measurements of particle size and volume fraction were introduced based on time resolved laser-induced incandescence (TIRE-LII) and laser-induced ion mobility (LIIM). The one has more convenience and accuracy than conventional LII technique and the other works best for particle sizes of a few nanometers at high concentrations in a uniform concentration field. A complementary ex-situ measurement of particle size is nano differential mobility analyzer (Nano-DMA), which recently developed for measuring particle sizes between 2nm and 100nm and provides high-resolution size information for early soot. Particles will be also collected on transmission electron microscope (TEM) grids using rapid thermophoretic sampling and analyzed for morphology. These measurements will allow fresh and original insight into the characterizing soot inception process. The measured physical properties of incipient soot will clarify the controlling growth mechanism combined with chemical ones, and the dominant mechanism for soot modeling can be deduced from the information.

  • PDF

Surface Characterization of $\beta$-Sialon Powder Prepared from Hadong Kaolin (하동 카올린으로부터 제조한 $\beta$-Sialon 분체의 표면특성)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.12
    • /
    • pp.961-968
    • /
    • 1991
  • The nature and composition of the surfaces of silicon nitride and β-Sialon powders were investigated using high voltage and high resolution transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). β-Sialon powder was produced from Hadong kaolin by the carbothermic reduction and simultaneous nitridation. XPS showed that Al was contained in the surface of β-Sialon powder besides Si, N and O components, which is different from that of silicon nitride. It was supposed that Al in the surface of β-Sialon was bonded with oxygen from the oxygen-nitrogen ratio and the measurement of Al 2p binding energies. After both silicon nitride and β-Sialon powders were oxidized at 800℃ for 24h in air, nitrogen didn't exist in the surfaces and the depth of the oxide layer increased. The measurement of Si 2p binding energies showed that the chemical shifts occurred from Si3N2O and/or Si2N2O to SiO2 phase.

  • PDF