Preparation of Ag-PS and Ag-PSS Particles by ${\gamma}$-Irradiation and Their Antimicrobial Efficiency against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352

  • Published : 2006.04.01

Abstract

Polystyrene, PS, particles of 450 nm diameter and poly(styrene-co-styrene sulfonate), PSS, particles of 140-160 nm diameter were prepared by emulsifier-free emulsion polymerization. The surfaces of the PS and PSS particles were coated with Ag nanoparticles for the application of antimicrobial agents by reduction of Ag ions using ${\gamma}$-irradiation. The Ag-PS and Ag-PSS were characterized by High-Resolution Transmittance Electron Microscopy (HR-TEM), Field-Emission Scanning Electron Microscopy (FE-SEM), and Energy Dispersive X-ray Spectroscopy (EDXS). The HR-TEM and EDXS data showed that the Ag nanoparticles were loaded on the surface of the PS and PSS particles, respectively. The antimicrobial efficiency of the Ag-PS and Ag-PSS particles (0.4 g) with ca. 100 ppm Ag, which was coated onto yam (KS K 0905-1996 rule), was tested against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352 after 100 washing cycles (KS K 0432-1999 rule). The antimicrobial efficiency of the Ag-PS particles against Staphylococcus aureus ATCC 6538 and Klebsiella pneumoniae ATCC 4352 was 99.9% after 100 cycles washing., confirming that the Ag-PS particles can be used as antimicrobial agents.

Keywords

References

  1. H. Kawaguchi, Prog. Polym. Sci., 25, 1171 (2000) https://doi.org/10.1016/S0079-6700(00)00024-1
  2. C. E. Reese and S. A. Asher, J. Colloid Interf. Sci., 248, 42 (2002)
  3. S. J. Fang and H. Kawaguchi, Colloid Surface A, 211, 79 (2002) https://doi.org/10.1016/S0927-7757(02)00236-4
  4. W. R. Hill and D. M. Pillsbury, Argyria-The Pharmacology of Silver, Williams and Wilkins, Baltimore,1939
  5. J. Gibbard, J. Am. Public Health, 27, 122 (1937)
  6. C. Fox, Int. Surg., 60, 275 (1975)
  7. F. Newell, Am. J. Ophthalmol., 90, 874 (1980)
  8. N. Pradhan, A. Pal, and T. Pal, Colloid Surface A, 196, 247 (2002) https://doi.org/10.1016/S0927-7757(01)01040-8
  9. S.-H. Choi and H. G. Park, Appl. Surf. Sci., 243, 76 (2005) https://doi.org/10.1016/j.apsusc.2004.09.051
  10. T. Li, H. G. Park, H.-S. Lee, and S.-H. Choi, Nano Tech., 15, S660 (2004)
  11. S.-H. Choi, S. H. Lee, Y. M. Hwang, K. P. Lee, and H. D. Kang, Radiati. Phys. Chem., 67, 517 (2003) https://doi.org/10.1016/S0969-806X(03)00097-5
  12. S.-H. Choi, H. J. Noh, and K. P. Lee, Bull. Korean Chem. Soc., 26, 1549 (2005) https://doi.org/10.5012/bkcs.2005.26.10.1549
  13. S. Sugawa, K. Sayama, K. Okabe, and H. Arakawa, Energy Convers. Mgmt., 36, 665 (1995) https://doi.org/10.1016/0196-8904(95)00093-S
  14. S.-D. Oh, S. Lee, S.-H. Choi, I.-S. Lee, Y.-M. Lee, J.-H. Chun, and H.-J. Park, Colloid Surface A, 275, 228 (2006) https://doi.org/10.1016/j.colsurfa.2005.11.039
  15. J.-L. Ou, J.-K. Yang, and H. Chen, Europ. Polym. J., 37, 789 (2001) https://doi.org/10.1016/S0014-3057(00)00175-0
  16. http://www.fiti.re.kr