DOI QR코드

DOI QR Code

Review on the structural understanding of the 10S myosin II in the era of Cryo-electron microscopy

  • Anahita Vispi Bharda (Division of Chemistry & Biochemistry, Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Hyun Suk Jung (Division of Chemistry & Biochemistry, Department of Biochemistry, College of Natural Sciences, Kangwon National University)
  • Received : 2021.12.21
  • Accepted : 2022.09.23
  • Published : 2022.12.31

Abstract

The compact smooth muscle 10S myosin II is a type of a monomer with folded tail and the heads bending back to interact with each other. This inactivated form is associated with regulatory and enzymatic activities affecting myosin processivity with actin filaments as well as ATPase activity. Phosphorylation by RLC can however, shuttle myosin from the inhibited 10S state to an activated 6S state, dictating the equilibrium. Multiple studies contributed by TEM have provided insights in the structural understanding of the 10S form. However, it is only recently that the true potential of Cryo-EM in deciphering the intramolecular interactions of 10S myosin state has been realized. This has led to an influx of new revelations on the 10S inactivation, unfolding mechanism and association in various diseases. This study reviews the gradual development in the structural interpretation of 10S species from TEM to Cryo-EM era. Furthermore, we discuss the utility of Cryo-EM in future myosin 10S studies and its contribution to human health.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2021R1A2C1009404 to HSJ) and the Korea Basic Science Institute (KBSI) National Research Facilities &Equipment Center (NFEC) grant funded by the Korea government (Ministry of Education) (2019R1A6C1010006).

References

  1. R.J. Ankrett, A.J. Rowe, R.A. Cross, J. Kendrick-Jones, C.R. Bagshaw, A folded (10 S) conformer of myosin from a striated muscle and its implications for regulation of ATPase activity. J. Mol. Biol. 217, 323-335 (1991)
  2. S.A. Burgess, S. Yu, M.L. Walker, R.J. Hawkins, J.M. Chalovich, P.J. Knight, Structures of smooth muscle myosin and heavy Meromyosin in the folded, shutdown state. J. Mol. Biol. 372, 1165-1178 (2007)
  3. M.A. Conti, R.S. Adelstein, Nonmuscle myosin II moves in new directions. J. Cell Sci. 121, 11-18 (2008)
  4. R. Craig, R. Smith, J. Kendrick-Jones, Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. Nature. 302, 436-439 (1983)
  5. R. Craig, J.L. Woodhead, Structure and function of myosin filaments. Curr. Opin. Struct. Biol. 16, 204-212 (2006)
  6. D. Cressey, E. Callaway, Cryo-electron microscopy wins chemistry Nobel. Nature. 550, 167-167 (2017)
  7. R.A. Cross, What is 10S myosin for? J. Muscle Res. Cell Motil. 9, 108-110 (1988)
  8. R.A. Cross, K.E. Cross, A. Sobieszek, ATP-linked monomer-polymer equilibrium of smooth muscle myosin: The free folded monomer traps ADP.Pi. EMBO J. 5, 2637-2641 (1986)
  9. R.A. Cross, A.P. Jackson, S. Citi, J. Kendrick-Jones, C.R. Bagshaw, Active site trapping of nucleotide by smooth and non-muscle myosins. J. Mol. Biol. 203, 173-181 (1988)
  10. J. Dubochet, M. Adrian, J.J. Chang, J.C. Homo, J. Lepault, A.W. McDowall, P. Schultz, Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129-228 (1988)
  11. M.A. Geeves, K.C. Holmes, Structural mechanism of muscle contraction. Annu. Rev. Biochem. 68, 687-728 (1999)
  12. J. Hanson, H.E. Huxley, Structural basis of the Cross-striations in muscle. Nature. 172, 530-532 (1953)
  13. A.F. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem 7, 255-318 (1957)
  14. H.S. Jung, N. Billington, K. Thirumurugan, B. Salzameda, C.R. Cremo, J.M. Chalovich, P.D. Chantler, P.J. Knight, Role of the tail in the regulated state of myosin 2. J. Mol. Biol. 408, 863-878 (2011)
  15. H.S. Jung, S.A. Burgess, N. Billington, M. Colegrave, H. Patel, J.M. Chalovich, P.D. Chantler, P.J. Knight, Conservation of the regulated structure of folded myosin 2 in species separated by at least 600 million years of independent evolution. Proc. Natl. Acad. Sci. 105, 6022 (2008a)
  16. H.S. Jung, S. Komatsu, M. Ikebe, R. Craig, Head-Head and Head-Tail Interaction: A General Mechanism for Switching Of Myosin II Activity in Cells. Mol. Biol. Cell 19, 3234-3242 (2008b)
  17. K.H. Lee, G. Sulbaran, S. Yang, J.Y. Mun, L. Alamo, A. Pinto, O. Sato, M. Ikebe, X. Liu, E.D. Korn, F. Sarsoza, S.I. Bernstein, R. Padron, R. Craig, Interacting-heads motif has been conserved as a mechanism of myosin II inhibition since before the origin of animals. Proc. Natl. Acad. Sci. 115, E1991 (2018)
  18. X. Ma, R.S. Adelstein, The role of vertebrate nonmuscle myosin II in development and human disease. BioArchitecture. 4, 88-102 (2014)
  19. D.L. Milton, A.N. Schneck, D.A. Ziech, M. Ba, K.C. Facemyer, A.J. Halayko, J.E. Baker, W.T. Gerthoffer, C.R. Cremo, Direct evidence for functional smooth muscle myosin II in the 10S self-inhibited monomeric conformation in airway smooth muscle cells. Proc. Natl. Acad. Sci. 108, 1421 (2011)
  20. J.J. Olney, J.R. Sellers, C.R. Cremo, Structure and function of the 10 S conformation of smooth muscle myosin *. J. Biol. Chem. 271, 20375-20384 (1996)
  21. I. Rayment, W.R. Rypniewski, K. Schmidt-Base, R. Smith, D.R. Tomchick, M.M. Benning, D.A. Winkelmann, G. Wesenberg, H.M. Holden, Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50-58 (1993)
  22. C.A. Scarf, G. Carrington, D. Casas-Mao, J.M. Chalovich, P.J. Knight, N.A. Ranson, M. Peckham, Structure of the shutdown state of myosin-2. Nature. 588, 515-520 (2020)
  23. J.R. Sellers, Regulation of cytoplasmic and smooth muscle myosin. Curr. Opin. Cell Biol. 3, 98-104 (1991)
  24. M.S. Shutova, T.M. Svitkina, Common and Specific Functions of Nonmuscle Myosin II Paralogs in Cells. Biochem. (Mosc) 83, 1459-1468 (2018)
  25. H. Suzuki, T. Kamata, H. Onishi, S. Watanabe, Adenosine triphosphate-induced reversible change in the conformation of chicken gizzard myosin and heavy Meromyosin1. J Biochem. 91, 1699-1705 (1982)
  26. H. Suzuki, H. Onishi, K. Takahashi, S. Watanabe, Structure and function of chicken gizzard Myosin1. J Biochem. 84, 1529-1542 (1978)
  27. K.M. Trybus, T.W. Huiatt, S. Lowey, A bent monomeric conformation of myosin from smooth muscle. Proc. Natl. Acad. Sci. 79, 6151 (1982)
  28. K.M. Trybus, S. Lowey, Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength. J. Biol. Chem. 259, 8564-8571 (1984)
  29. M. Vicente-Manzanares, X. Ma, R.S. Adelstein, A.R. Horwitz, Non-muscle myosin II takes Centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778-790 (2009)
  30. T. Wendt, D. Taylor, K.M. Trybus, K. Taylor, Three-dimensional image reconstruction of dephosphorylated smooth muscle heavy meromyosin reveals asymmetry in the interaction between myosin heads and placement of subfragment 2. Proc. Natl. Acad. Sci. 98, 4361 (2001)
  31. S. Yang, P. Tiwari, K.H. Lee, O. Sato, M. Ikebe, R. Padron, R. Craig, Cryo-EM structure of the inhibited (10S) form of myosin II. Nature. 588, 521-525 (2020)