• 제목/요약/키워드: Heteroscedastic model

검색결과 42건 처리시간 0.023초

A study on robust regression estimators in heteroscedastic error models

  • Son, Nayeong;Kim, Mijeong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권5호
    • /
    • pp.1191-1204
    • /
    • 2017
  • Weighted least squares (WLS) estimation is often easily used for the data with heteroscedastic errors because it is intuitive and computationally inexpensive. However, WLS estimator is less robust to a few outliers and sometimes it may be inefficient. In order to overcome robustness problems, Box-Cox transformation, Huber's M estimation, bisquare estimation, and Yohai's MM estimation have been proposed. Also, more efficient estimations than WLS have been suggested such as Bayesian methods (Cepeda and Achcar, 2009) and semiparametric methods (Kim and Ma, 2012) in heteroscedastic error models. Recently, Çelik (2015) proposed the weight methods applicable to the heteroscedasticity patterns including butterfly-distributed residuals and megaphone-shaped residuals. In this paper, we review heteroscedastic regression estimators related to robust or efficient estimation and describe their properties. Also, we analyze cost data of U.S. Electricity Producers in 1955 using the methods discussed in the paper.

Weighted Support Vector Machines for Heteroscedastic Regression

  • Park, Hye-Jung;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.467-474
    • /
    • 2006
  • In this paper we present a weighted support vector machine(SVM) and a weighted least squares support vector machine(LS-SVM) for the prediction in the heteroscedastic regression model. By adding weights to standard SVM and LS-SVM the better fitting ability can be achieved when errors are heteroscedastic. In the numerical studies, we illustrate the prediction performance of the proposed procedure by comparing with the procedure which combines standard SVM and LS-SVM and wild bootstrap for the prediction.

  • PDF

연속형-GARCH 시계열의 범주형화(Clipping)를 통한 분석 (An Analysis of Categorical Time Series Driven by Clipping GARCH Processes)

  • 최문선;백지선;황선영
    • 응용통계연구
    • /
    • 제23권4호
    • /
    • pp.683-692
    • /
    • 2010
  • 본 논문에서는 연속형-GARCH 시계열 자료인 금융 시계열 자료에 대해서 클리핑(clipping)을 통해 얻은 이항(binary) 범주형 시계열을 분석하고 응용하는 방안에 대해 연구하고 있다. 모수추정 방법을 소개하고 있으며 이를 이용하여 이분산 시계열과 연관된 확률을 추정하는 방법을 예시하였다.

이분산 로짓모형의 추정과 적용 (Development and Application of the Heteroscedastic Logit Model)

  • 양인석;노정현;김강수
    • 대한교통학회지
    • /
    • 제21권4호
    • /
    • pp.57-66
    • /
    • 2003
  • 로짓모형은 선택대안에 대한 확률 계산이 용이하고, 설명변수의 파라메타 추정이 용이하기 때문에 교통 수단 선택모형으로 널리 쓰여지고 있다. 그러나 이러한 로짓모형은 수단선택 효용함수의 오차항 분포가 선택 대안간에 독립적이고, 그 분산이 동일하다는(IID:Independent and Identically Distributed)가정을 내포한다. 본 연구는 수단선택 효용오차의 분산이 수단간에 동일하다는 가정을 완화시키는 이분산 로짓모형 추정에 관한 연구이다. 수단선택 효용오차항의 동분산성을 극복함으로써 보다 현실적인 통행자의 수단선택행태를 반영하는 로짓모형을 추정하는데 본 연구의 목적이 있다. 이를 위해 로짓모형 오차항의 분산과 직접적인 관련이 있는 규모인자(scale factor)를 도입하였다. 이는 대중 교통과 승용차의 통행시간차이에 따른 이분산성을 고려하도록 정의되었으며, 이를 통행시간 파라메타 추정에 활용하였다. 본 연구에서 개발된 이분산 로짓모형의 추정 결과. 통행자의 통행시간이 증가하면서 대중교통수단과 승용차의 통행시간차이가 동일하더라도 통행자의 대중교통 수단선택확률이 차이를 보임으로 현실적인 통행자의 수단선택 행태를 반영하는 것으로 판명되었다.

A kernel machine for estimation of mean and volatility functions

  • Shim, Joo-Yong;Park, Hye-Jung;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.905-912
    • /
    • 2009
  • We propose a doubly penalized kernel machine (DPKM) which uses heteroscedastic location-scale model as basic model and estimates both mean and volatility functions simultaneously by kernel machines. We also present the model selection method which employs the generalized approximate cross validation techniques for choosing the hyperparameters which affect the performance of DPKM. Artificial examples are provided to indicate the usefulness of DPKM for the mean and volatility functions estimation.

  • PDF

A Study on Support Vectors of Least Squares Support Vector Machine

  • Seok, Kyungha;Cho, Daehyun
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.873-878
    • /
    • 2003
  • LS-SVM(Least-Squares Support Vector Machine) has been used as a promising method for regression as well as classification. Suykens et al.(2000) used only the magnitude of residuals to obtain SVs(Support Vectors). Suykens' method behaves well for homogeneous model. But in a heteroscedastic model, the method shows a poor behavior. The present paper proposes a new method to get SVs. The proposed method uses the variance of noise as well as the magnitude of residuals to obtain support vectors. Through the simulation study we justified excellence of our proposed method.

PRELIMINARY DETECTION FOR ARCH-TYPE HETEROSCEDASTICITY IN A NONPARAMETRIC TIME SERIES REGRESSION MODEL

  • HWANG S. Y.;PARK CHEOLYONG;KIM TAE YOON;PARK BYEONG U.;LEE Y. K.
    • Journal of the Korean Statistical Society
    • /
    • 제34권2호
    • /
    • pp.161-172
    • /
    • 2005
  • In this paper a nonparametric method is proposed for detecting conditionally heteroscedastic errors in a nonparametric time series regression model where the observation points are equally spaced on [0,1]. It turns out that the first-order sample autocorrelation of the squared residuals from the kernel regression estimates provides essential information. Illustrative simulation study is presented for diverse errors such as ARCH(1), GARCH(1,1) and threshold-ARCH(1) models.

Comparison between nonlinear statistical time series forecasting and neural network forecasting

  • Inkyu;Cheolyoung;Sungduck
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.87-96
    • /
    • 2000
  • Nonlinear time series prediction is derived and compared between statistic of modeling and neural network method. In particular mean squared errors of predication are obtained in generalized random coefficient model and generalized autoregressive conditional heteroscedastic model and compared with them by neural network forecasting.

  • PDF

이분산성 및 두꺼운 꼬리분포를 가진 금융시계열의 위험추정 : VaR와 ES를 중심으로 (VaR and ES as Tail-Related Risk Measures for Heteroscedastic Financial Series)

  • 문성주;양성국
    • 재무관리연구
    • /
    • 제23권2호
    • /
    • pp.189-208
    • /
    • 2006
  • 대부분의 국내 선행연구들은 이분산성은 GARCH모형으로, 꼬리위험은 EVT모형으로 따로 고려하였다. 이 경우 이분산성 및 꼬리의 두꺼움을 동시에 고려하지 못한 VaR값은 실제 위험량을 적절히 반영하지 못할 가능성이 있다. 따라서 본 연구에서는 이분산성 및 꼬리의 두꺼움을 고려할 수 있는 GARCH-EVT모형이 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 나타내는지 살펴보았다. 연구결과를 요약하면 다음과 같다. 첫째, 주식수익률은 정규분포보다는 꼬리부분이 두꺼운 형태를 보이고, 이분산성을 가진다. 이 경우 정규분포하에서 산출된 VaR는 실제 손실금액을 과소평가할 위험성이 있어 이분산성과 꼬리의 두꺼움을 감안할 수 있는 모형의 도입이 필요함을 알 수 있다. 둘째, 이분산성과 꼬리의 두꺼움을 고려한 GARCH-EVT모형하에서의 VaR는 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 보였다. 셋째, 이분산성 및 꼬리의 두꺼움을 고려한 GARCH-EVT모형하에서의 ES는 정규분포를 가정한 VaR와 이분산성을 가정한 VaR보다 높은 성과를 일관되게 보여주지 않았다. 결론적으로 이분산성과 꼬리의 두꺼움을 동시에 반영한 GARCH-EVT모형하에서 VaR가 금융기관의 위험관리의 유용한 도구가 될 수 있는 가능성을 발견하였다. 비록 상대적으로 높은 성과를 보이지는 않지만 ES는 VaR함께 위험척도로 같이 사용할 때 보수적인 위험관리 차원에 부합될 것이다.

  • PDF

Doubly penalized kernel method for heteroscedastic autoregressive datay

  • Cho, Dae-Hyeon;Shim, Joo-Yong;Seok, Kyung-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권1호
    • /
    • pp.155-162
    • /
    • 2010
  • In this paper we propose a doubly penalized kernel method which estimates both the mean function and the variance function simultaneously by kernel machines for heteroscedastic autoregressive data. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which aect the performance of proposed method. Simulated examples are provided to indicate the usefulness of proposed method for the estimation of mean and variance functions.