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Abstract
We propose a doubly penalized kernel machine (DPKM) which uses heteroscedastic

location-scale model as basic model and estimates both mean and volatility functions
simultaneously by kernel machines. We also present the model selection method which
employs the generalized approximate cross validation techniques for choosing the hy-
perparameters which affect the performance of DPKM. Artificial examples are provided
to indicate the usefulness of DPKM for the mean and volatility functions estimation.

Keywords: Generalized approximate cross validation function, heteroscedastic regres-
sion, laplace distribution, location-scale model, penalized kernel regression.

1. Introduction

For given data set {xi, yi}ni=1, with xi ∈ Rd and yi ∈ R, we consider the heteroscedastic
regression model,

yi = µ(xi) + σ(xi)εi (1.1)

where xi is the covariate vector and εi is assumed to follow a distribution with mean 0 and
variance 1. The mean function µ(xi) = E(yi|xi) and the volatility function σ(xi) = σ(yi|xi)
(or the variance function σ2(xi)) are to be estimated. Most nonparametric regression meth-
ods focus on the estimating the conditional mean for various data types.(Shim and Seok,
2008, Shim et al., 2009). However estimating the variance function also is known important
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in many studies (Gallant and Tauchen, 1997). The variance function is estimated based on
the regression residuals previously obtained from differences of responses and estimates of
the mean function. (Ruppert et al., 1997; Fan and Yao, 1998). Bayesian approach has been
introduced by Yau and Kohn (2003). Doubly penalized likelihood estimation based on the
normal distribution has been proposed by Yuan and Wahba (2004). A distinguishing feature
of it is estimating both the mean function and the variance function simultaneously without
parametric assumption of either.

In this paper, we propose a doubly penalized kernel machine (DPKM) to take the het-
eroscedasticity into account and estimate both the mean function and the volatility function
simultaneously. Laplace distribution is assumed to employ the robustness to the mean func-
tion estimation. The rest of this paper is organized as follows. The DPKM is introduced
in Section 2, we propose a iteratively reweighted least squares (IRWLS) procedure for the
mean function estimation and present Newton Raphson method for the volatility function
estimation, and present the model selection method using the generalized approximate cross
validation (GACV) functions. In Section 3 we perform the numerical studies through ex-
amples. In Section 4 we give the conclusions.

2. Doubly penalized kernel machine

We here consider the location-scale model based DPKM which estimates the mean function
and the volatility function simultaneously. From the heteroscedastic regression model (1.1),
we assume that εi follows independently double exponential distribution with mean 0 and
scale parameter 1/

√
2. µ(xi) and σ(xi) are the mean function and the volatility function

of yi ,respectively, which are to be estimated. The negative log likelihood of the given data
set can be expressed as (constant terms are omitted)

L(µ, σ) =
1
n

n∑
i=1

√
2|yi − µ(xi)|
σ(xi)

+ logσ(xi). (2.1)

Due to the positivity of the volatility function we write the logarithm of σ(xi) as g(xi),
then the negative log likelihood can reexpressed as

L(µ, g) =
1
n

n∑
i=1

{
√

2|yi − µ(xi)|e−g(xi) + g(xi)}. (2.2)

The mean function is estimated by a linear model, µ(x) = ωµ
′φµ(x) + bµ with a bias bµ,

conducted in a high dimensional feature space. Here the feature mapping function φµ(·) :
Rd → Rdf maps the input space to the higher dimensional feature space where the dimension
df is defined in an implicit way. It is known that φµ(xi)′φµ(xj) = Kµ(xi,xj) which are
obtained from the application of Mercer (1909)’s conditions. Also g is estimated by a linear
model, g(x) = ωg

′φg(x) + bg with a bias bg.
Then the estimates of (µ, g,ωµ,ωg) are obtained by minimizing the penalized negative

log likelihood,

L(ωµ,ωg, bµ, bg) =
n∑
i=1

{|yi − ωµ′φµ(xi)− bµ|e−g(xi) + ωg ′φg(xi) + bg} (2.3)
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+
λµ
2
‖ωµ‖2 +

λg
2
‖ωg‖2

where λµ and λg are nonnegative constants which control the trade-off between the goodness-
of-fit on the data and ‖ωµ‖2 and ‖ωg‖2. The representation theorem Kimeldorf and Wahba
(1971) guarantees the minimizer of the penalized negative log likelihood to be µ(x) =
Kµαµ + bµ and g(x) = Kgαg + bg, for some vectors αµ and αg.

Now the problem (2.3) becomes obtaining (αµ,αg, bµ, bg) to minimize

L(αµ,αg, bµ, bg) =
√

2|y −Kµαµ − bµ|e−Kgαg−bg + 1′(Kgαg + bg) (2.4)

+
λµ
2
αµ
′Kµαµ +

λg
2
αg
′Kgαg

where 1 is n× 1 vector of 1’s. The parameters (αµ,αg, bµ, bg) of the conditional mean and
volatility models can be found via an IRWLS procedure, alternating updates of the mean
and volatility models.

2.1. Updating the conditional mean model

Fixing g = ĝ, the equation (2.4) reduces to

L(αµ, bµ) =
√

2|y −Kµαµ − bµ|e−ĝ +
λµ
2
αµ
′Kµαµ. (2.5)

The solution to (2.5) can be obtained by a weighted support vector machine (Vapnik, 1995,
1998) since (2.5) is actually equivalent to the objective function of a weighted support vector
machine with weights

√
2e−ĝ.

For easy selection of the optimal values of hyperparameters (λµ and other tuning pa-
rameters included in the kernel Kµ), we should not use the leave-one-out cross validation
(LOO-CV) function but GACV function. We use IRWLS procedure so that the final esti-
mator of (αµ, bµ) can be expressed as the product of the hat matrix and y, which enables
to obtain GACV function for the given values of hyperparameters.

We propose an IRWLS procedure to find the minimizers of (2.5) with a modified absolute
loss function which is differentiable at 0. The modified absolute loss function hδ(·) is attained
by providing the differentiability at 0 by differing from the original absolute loss function
h(·) in the small interval (−δ, δ),

hδ(r) = |r|I(|r| > δ) +
r2

δ
I(|r| 5 δ) (2.6)

where δ > 0 and I(·) is an indicative function.
Now the likelihood function (2.5) becomes

L(αµ, bµ) =
n∑
i=1

uihδ(yi −Kµiαµ − bµ) +
λµ
2
αµ
′Kµαµ (2.7)
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where ui =
√

2 exp(−gi) and Kµi is the ith row of Kµ. Taking partial derivatives of (2.7)
with regard to αµ and bµ leads to the optimal values of αµ and bµ are obtained from(

αµ
bµ

)
=
(
UHKµ + λµI UH1

1′UHKµ 1′UH1

)−1(
UHy

1′UHy

)
. (2.8)

Here U is a digonal matrix of ui’s and H is a diagonal matrix with the ith diagonal element
hii obtained from the derivative of the modified absolute loss function as

hii =
1
ri
I(ri > δ)− 1

ri
I(ri < δ) +

2
δ
I(|ri| 5 δ) (2.9)

where ri = yi −Kµiαµ − bµ.
The solution to (2.8) cannot be obtained in a single step since H contains αµ and bµ.

Thus we need to apply IRWLS procedure which starts with initial values of αµ and bµ as
follows:

⒜ Calculate H with αµ and bµ .

⒝ Calculate αµ and bµ from (2.8).

⒞ Reiterate steps until convergence.

We now consider the cross validation (CV) function as follows:

CV (θ) =
1
n

n∑
i=1

uihδ(yi − µ̂(−i)
θ (xi)) (2.10)

where θ is the set of hyperparameters and µ̂
(−i)
θ (xi) is the estimate of µ(xi) estimated

without ith observation. Since for each candidates of hyperparameters, µ̂(−i)
θ (xi) for i =

1, · · · , n, should be evaluated, selecting parameters using CV function is computationally
formidable. By using a first order Taylor series expansion of the modified absolute loss
function and the derivation procedure of GACV function from CV function by Yuan (2006),
We have GACV function as follows

GACV (θ) =

n∑
i=1

uihδ(yi − µ̂(−i)
θ (xi))

n− trace(S)
, (2.11)

where S = (K,1)
(
UHK + λµI UHI

1′UHK 1′UH1

)−1(
UH

1′UH

)
is the hat matrix such that

µ̂ = Sy.

2.2. Updating the conditional volatility model

Fixing µ = µ̂, the equation (2.4) reduces to

L(αg, bg) = z′ exp(−Kgαg − bg) + 1′(Kgαg + bg) +
λg
2
αg
′Kgαg, (2.12)
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where z is n× 1 vector with the ith elememt
√

2|yi − µ̂i|.
It is worth noting that (2.12) has the form of a penalized Gamma likelihood as if zi, i =

1, · · · , n were independently drawn from Gamma distributions with shape parameter 1 and
scale parameter exp(gi) = exp(Kgiαg + bg), i = 1, · · · , n. This connection makes it possible
to apply the general methodology for solving penalized likelihood problems with responses
from exponential family. The model of the conditional standard deviation can then be up-
dated efficiently via a simple Newton-Raphson method. In this step, the hyperparameters
are λg and other tuning parameters included in the kernel Kg. The hyperparameters are
selected by GACV technique developed by Xiang and Wahba (1996)

GACV (θ) =
1
n

n∑
i=1

(zie−gi + gi) +
tr(V )
n

n∑
i=1

zi(zi − exp(gi))

n− tr(W 1/2VW 1/2)
, (2.13)

where W is a diagonal matrix whose ith element is exp(2gi) and V = (W +Kg/λg)
−1.

Summing up, we describe the algorithm for training and model selection of the DPKM
for the heteroscedastic regression model as follows:

1) With given values of ĝ = Kgα̂g + b̂g,

2) By GACV funtion (2.13), find the optimal values of λµ and other tuning parameters
included in the kernel Kµ.

3) Find α̂µ and b̂µ from (2.8).

4) With µ̂ = Kµα̂µ + b̂µ, by GACV funtion (2.13), find the optimal values of λg and other
tuning parameters included in the kernel Kg .

5) Find α̂g and b̂g from (2.12) using Newton-Raphson method.

6) Iterate 1-5 until convergence.

3. Numerical studies

We illustrate the performance of DPKM based on Laplace distribution using IRWLS
procedure through two simulated data sets.

Example 1: For the first simulated example, 150(xi, yi)’s are generated to present the
estimation performance of the proposed method such that

yi = f(xi) + ei = 2 + sin(2πxi) + ei, i = 1, · · · , 150,

where xi is generated from the uniform distribution(0,1) and ei is generated from Laplace
distribution with mean 0 and scale parameter 1√

2
exp(xi) (volatility of yi is exp(xi)). The

Gaussian kernel function and δ = 0.000001 are utilized for the mean function estimation
and the linear kernel function are utilized for the mean function estimation and volatility
function estimation. Figure 3.1 (Left) shows true mean (solid line) and estimated mean
function (dashed line) imposed on the scatter plots of 150 data points of yi’s in a data set.
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Figure 3.1 (Right) shows true volatility (solid line) and estimated volatility function (dashed
line) of a data set. We generated 100 data sets and obtained the MSEs for the performance
metric as follows,

MSEµ =
1

150

150∑
i=1

(µ̂i − f(xi))2 and MSEσ =
1

150

150∑
i=1

(σ̂i − σi)2.

We obtained the average of 100 MSEµ’s and their standard error as 0.081 and 0.0048,
respectively. Also the average of 100 MSEµ’s and their standard error were obtained as
0.0351 and 0.0043, respectively.

Example 2: For the second simulated example, 150(xi, yi)’s are generated to present the
estimation performance of the proposed method such that

yi = f(xi) + ei = 2(exp(−30(xi − 0.25)2 + sin(2πxi))− 2 + ei, i = 1, · · · , 150,

where xi = (i − 0.5)/150 and ei is generated from Laplace distribution with mean 0 and
scale parameter 1√

2
exp(0.5 sin(2πxi)) (volatility of yi is exp(0.5 sin(2πxi))). The Gaussian

kernel function and δ = 0.000001 are utilized for the mean function estimation and the
Gaussian kernel function are utilized for the mean function estimation and volatility function
estimation. Figure 3.2 (Left) shows true mean (solid line) and estimated mean function
(dashed line) imposed on the scatter plots of 150 data points of yi’s. Figure 3.2 (Right)
shows true volatility (solid line) and estimated volatility function (dashed line) of a data
set. We obtained the average of 100 MSEµ’s and their standard error as 0.0572 and 0.0038,
respectively. Also the average of 100 MSEσ’s and their standard error were obtained as
0.0367 and 0.0026, respectively.

 

Figure 3.1 Mean function estimation (Left) and Volatility function estimation (Right) of a data set in
Example 1.
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From MSE’s we can see that the proposed method provides the accurate estimation of
mean and volatility functions, and from figures we can see that the estimated mean and
volatility functions by proposed method behave similarly as the true functions do.

 

Figure 3.2 Mean function estimation (Left) and Volatility function estimation (Right) of a data set in
Example 2.

4. Conclusions

In this paper, we dealt with estimating the mean function and the volatility function si-
multaneously by DPKM based on Laplace distribution. Through the examples we showed
that the proposed procedure derives the satisfying results. We found that the doubly pe-
nalized kernel machine using IRWLS procedure provides the faster computation in training
and model selection than using the weighted support vector machine for the mean function
estimation.
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