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Abstract

In this paper we propose a doubly penalized kernel method which estimates both
the mean function and the variance function simultaneously by kernel machines for
heteroscedastic autoregressive data. We also present the model selection method which
employs the cross validation techniques for choosing the hyper-parameters which affect
the performance of proposed method. Simulated examples are provided to indicate the
usefulness of proposed method for the estimation of mean and variance functions.

Keywords: Autoregressive process, cross validation function heteroscedasticity, hyper-
parameters, kernel function.

1. Introduction

The estimation of a model from a data set is usually performed under the assumption that
the error terms are independently and identically distributed (iid) (Juditsky et al., 1995).
Most nonparametric regression methods focus on estimating the mean function with iid
assumption. This assumption is not satisfied when the correlation presents in the given data
set, which leads to severe problems on the estimation of a model under the iid assumption.

It becomes an important issue in many fields including the estimation of the variance
function (Anderson and Lund, 1997; Liu et al., 2007; Shim et al., 2009) and most of them
are focused on heteroscedastic regression problems. The variance is estimated based on the
regression residuals which are differences of responses and estimated means (Ruppert et al.,
1997; Fan and Yao, 1998). A penalized likelihood based the normal distribution to estimate
both the mean and the variance simultaneously has been proposed by Yuan and Wahba
(2004).
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In this paper, we consider the heteroscedastic autoregressive model, where x; is the co-
variate vector including a constant 1, y; — u(x;) is assumed to follow AR(p) process, and
the error term e; is assumed to follow a normal distribution (0,0%(x;)). We propose a dou-
bly penalized kernel method (DPKM) for heteroscedastic autoregressive data to take the
heteroscedasticity into account and estimate both the mean and the variance functions si-
multaneously under the AR model. The kernel trick is applied to DPKM, which has been
applied to the regression problems of various data types since it was firstly introduced in
Aizerman et al. (1964).

The rest of this paper is organized as follows. The DPKM is introduced in Section 2, the
mean function is estimated from the linear system and the variance is obtained by Newton-
Raphson method. In Section 3, cross validation functions are given for the model selections of
the mean and the variance functions estimations. Also estimation method for autoregressive
coefficient is presented. In Section 4 we perform the numerical studies through examples.
In Section 5 we give the conclusions.

2. Mean and variance functions estimation

Let the given data set be denoted by {@, y: 17, with x; € R? and y; € R, we consider
the heteroscedastic autoregressive model,

O(B)(yr — u(xt)) = e, t =1,2,--- ,m, (2.1)
where ®(B) is a polynomial in back-shift operator B with parameters p;, i = 1, - ,p, such
that ®(B)y: = Yt — p1yi—1 — P2Yi—2 — - - — PpYi—p, and e; is assumed to follow independently

normal distribution (0, 02(x;)). For the convenience we assume that y,’s are known to follow
AR(1) process throughout this paper, which is, y1 = p(x1) + €1 and yr = p(xe:) + p(yi—1 —

w(@i—1)) + e, t =2,3,-+- ,n. Given x, the mean function and the variance function of y;
are given as follows.
E(yila:) = p(a:), Var(yla) = p?Var(y |z 1) + o° (@) (2.2)

Here p(xz;) and o2(x;) are functions to be estimated. Var(y|z;) is estimated as
17a\r(yt|wt) = ﬁQ@“(yt,ﬂ:ct,l) + %(m,) with Var(yi|zy) = 52(z1). The negative log
likelihood of the given data set can be expressed as (constant terms are omitted)

" 1
Lp,0?) = Z(yt — (@) — p(yr—1 — M(wt—l)))202(wt)
t=2

(2.3)

= ) g+ Y log o (@),
t=1

Due to the positivity of the variance function we write the logarithm of o%(x;) as g(x;) ,
then the negative log likelihood (2.3) can reexpressed as

n

L(p,g) = Y (ye — il@e) = p(ys—1 — p(@i—1)))%e 9 (24)
t=2

+ (g — pl@0)?e ™) £ g(ay).
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Kernel methods are used widely for function estimation (Hwang, 2008; Shim and Seok,
2008). Among kernel methods, the mean function is estimated by a linear model, u(x) =
w’u@b(m), conducted in a high dimensional feature space, in this paper. Here the feature
mapping function ¢, (-) : R? — R maps the input space to the higher dimensional feature
space where the dimension dy is defined in an implicit way.

It is well known that ¢, (x;) ¢, (x;) = K, (x;, ;) which are obtained from the application
of Mercer’s conditions (1909). Also g is estimated by a linear model, g(x) = w} ¢4(x).

Then the estimates of ( w,,,w, ) are obtained by minimizing the regularized negative log
likelihood,

n

L@ wg) = 3 (s — Wl (@) — plyer — y(@i-1))%e 0@ (2.5)
t=2

n
+ (o - w:i¢li(m1))2€7wg¢g(ml) + Zw;¢g(xt) + >‘/L||“"/t”2 + >‘g||wg”2
=1

where A, (A ) is a nonnegative constant which controls the tradeoff between the goodness-
of-fit on the data and ||w,|[* ( ||wg||* ). The representation theorem (Kimeldorf and Wahba,
1971) guarantees that the minimizer of the regularized negative log likelihood to be u(x) =
K, o, and g(x) = Ky for some vectors oy, and o.

Now the problem (2.5) becomes that of obtaining ( o, oy ) to minimize

Ly, ay) = (y*— K;a“)'Dgfl(y* - K o) + 1'g+\a,)/K, o+ N\ja,/ Koy, (2.6)

where
Y1 K;L,l
" Y2 — pY1 " K;L,2 - pKu,l
Yy = . y By = . 3
Yn — pyn—l K,u,n - PKp,n—l

K.+ is the t -th row of K, D, is a diagonal matrix of e9(®) = e and 1is a (n x 1)
vector with 1’s.

The estimates of parameters (o, a4) for the mean and variance functions can be found via
an iterative procedure, updating the mean function and the variance function alternatively.

Fixing g = g, the regularized negative log likelihood (2.6) reduces to

1 * * — * * >\
L(ay,) = 5(3/ - K;Laﬂ)/Dg l(y - K/_Lall) + %a;KﬂaH (2.7)
The solution to (2.7) is

a, =(K;D; 'K, + \,K,) ' K; D, 'y", (2.8)

which leads o = KM(K;Dg_lK; + )\#Ku)_lK;Dg_ly* =A,y*.
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Here y* can be written as

1 0 0 0
—p 1 0 0

y* =By = 0 = 1 0 04y, (2.9)
0 0 0—p 1

so that f& can be rewritten as g = A, B,y.
In case of homoscedastic regression model, the estimate of p is obtained as

=K, KK+ \NK,) ' Khy", (2.10)

which is equivalent to the results of Shim and Lee (2009) with AR(1).

To estimate g(x;) = logo(x¢)? which is the logarithm of the variance of e;, we use the
current estimates of o, and p. The a4 is estimated by minimizing the objective function
(regularized negative log likelihood of Gamma distribution of independent z;’s with shape
parameter 1 and scale parameters eg(:”'f))7

L(ag) = Z(Ztefg(mt) +g(x)) + Agery' Kgag = 1'(Dy 'tz + Kgag) + Aoy Kgag, (2.11)
t=1

where z; = (y; — K} ;&,,)°. &g is obtained by Newton-Raphson method, & = ad —
H~'G, where G and H are the gradient vector and Hessian matrix with respect to o,
respectively. Then we have 52(x;) = exp(g(x)).

Summing up, we describe the algorithm for training and model selection of the DPKM as
follows:

(a) With given values of g = K ay, find &, from (2.8).

(b) With gt = K&, , find @, from (2.11) using Newton-Raphson method.

(c) Tterate (a) and (b) until convergence.

With the final estimates of p, o, and oy we have the estimated mean and variance of y; as,

E(y|wy) = K48, and Var(y|@e) = p2Var (ye_1|2e—1)+62(x;) with Var(ys|@1) = 62 ().

3. Model selection

The functional structures of the estimation method of the mean and the variance func-
tions are characterized by hyper-parameters, the regularization parameters A, Ay, and other
tuning parameters included in the kernel.

In the mean function estimation, we should find the optimal values of hyper-parameters
(A, and tuning parameter 7, included in the kernel K,) and the estimate of p for the
estimation of &t = A, B,y. We denote a set of hyper-parameters by 8,, = (A, v, p)-

Under the assumption that the estimate of p is given, the optimal values of hyper-
parameters can be chosen by minimizing the generalized cross validation function (Golub et
al., 1979):

ny(I — A, B,)%y
(n—tr(AuB,))*

GCV(6,) = (3.1)
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Under the assumption that the optimal values of hyper-parameters are given, the estimate
of p is obtained by the conditional least squares method as follows,

Do (Y — (@) (Y1 — i(@-1))e %
Z?:Q(yt—l - ﬁ(wt_l))e—gt

where [i(x;) is the estimate of u(x;) given the previous estimate p and the optimal values
of hyper-parameters obtained from GCV function (3.1).

Thus the optimal values of hyper-parameters for the mean estimation and the estimate of
p are obtained iteratively as follows:

(a) Set the initial value of p.

(b) Obtain the optimal values of the hyper-parameters from GCV function (3.1).

(c) Obtain the estimate of p from (3.2).

(d) Reiterate (b) and (c¢) until convergence.

For the model selection of the variance function estimation, the optimal values of hyper-
parameters (A, and other tuning parameters included in the kernel K;) can be chosen by
minimizing the generalized approximate cross validation function (Xiang and Wahba, 1996;
Liu et al., 2007):

(3.2)

ﬁ:

1 tr(Dy*H,Dy?)
ny — tr(Dy*H,Dy'?)

1
GACV(8,) = ﬁl’(Dglz + Kgoy) + (z — e:><p(g))'D;2,z7 (3.3)

where Hy = (D.D; ' +2X K, ')~" is the inverse of Hessian matrix of (2.11) with respect
to g and D, a diagonal matrix of z.

4. Numerical studies

We illustrate the performance of the mean and variance estimations method based on
the kernel method for autoregressive heteroscedastic data and autoregressive homoscedastic
data through two simulated data sets.

Example 1. For the first simulated example, we consider the heteroscedastic autore-
gressive model,

y1 = p(r1) +eryr — p(re) = p(ye—1 — p(xi—1)) + e, t =2,---, 100,

where p = 0.5, 2y = t/100, p(x) = 14sin(27ray), ex ~ N(0,1.24sin(27z;)). The Gaussian
kernel functions are utilized for both the mean function estimation and the variance function
estimation in this example. Figure 4.1 (Left) shows true mean functions (solid line) and
estimated mean functions (dashed line) by DPKM, and estimated mean functions (dotted
line) by LS-SVM (Least Squares Support Vector Machine, Suykens and Vanderwalle, 1999)
which assumes iid errors, imposed on the scatter plots of 100 data points of y; 's in a data
set. Figure 4.1 (Right) shows true variance functions (solid line) and estimated variance
functions by DPKM (dashed line) of a data set. In Figure 4.1 (Right) we can see that
the estimated variance function by DPKM seems to represent well the behavior of variance
function of given data. We repeated the above procedure 100 times to have the root mean
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squared errors (RMSE) for the true mean functions and variance functions as follows,

100 100
— _ T — 2 — _ =2 22)\2
RMSE,, = 100;@,5 ue)? and RMSE ;2 = 100;(@ o?)?.

For the proposed method we obtained the average of 100 RMSE,’s and their standard error
as 0.4085 and 0.0112, respectively. For LS-SVM we obtained the average of 100 RMSE,,’s
and their standard error as 0.4716 and 0.0139, respectively. The smaller values of RMSE ;s
indicate that DPKM works better than LS-SVM on the mean function estimation in this
example. And we obtained the average of 100 RMSE ;2’s and their standard error as 0.7422
and 0.0257, respectively. The average of 100 p’s and their standard error are obtained as
0.4521 and 0.0126, respectively.

Figure 4.1 Mean function estimation (Left) and variance function estimation (Right) of a data set in
Example 1.

Example 2. For the second simulated example, we consider the homosecedastic autore-
gressive model,

y1 = p(r1) +en,ye — p(we) = p(ye—1 — p(re—1)) + et = 2,---,100

where p = 0.5 , z; = t/100 , p(z:) = 1 + sin(27zy) , e ~ N(0,2). The Gaussian ker-
nel functions are utilized for both the mean function estimation and the variance function
estimation in this example. Figure 4.2 (Left) shows true mean function (solid line) and esti-
mated mean functions (dashed line) by DPKM, and estimated mean functions (dotted line)
by LS-SVM which assumes iid errors, imposed on the scatter plots of 100 data points of ¥;’s
in a data set. Figure 4.2 (Right) shows true variance functions (solid line) and estimated
variance functions (dashed line) of a data set. In Figure 4.2 (Right) we can see that DPKM
seems to represent well the behavior of constant variance function of given data.

We repeated the above procedure 100 times to have the root mean squared errors (RMSE)
for the true mean functions and variance functions. For DPKM we obtained the average
of 100 RMSE,’s and their standard error as 0.4725 and 0.0146, respectively. For LS-SVM
we obtained the average of 100 RMSE,’s and their standard error as 0.6479 and 0.0168,
respectively. The smaller values of RMSE s indicate that DPKM works better than LS-
SVM on the mean function estimation in this example. And we obtained the average of 100
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RMSE ,2’s and their standard error as 0.4421 and 0.0302, respectively. The average of 100
p’s and their standard error are obtained as 0.4145 and 0.0103, respectively.

wary)

Figure 4.2 Mean function estimation (Left) and Variance function estimation (Right) of a data set in
Example 2.

5. Conclusions

In this paper, we dealt with estimating the mean and variance functions for heteroscedas-
tic autoregressive model and obtained cross validation functions for the proposed method.
DPKM can be applied even for the homoscedastic autoregressive model. Through the ex-
amples we showed that DPKM derives the satisfying results on estimating the mean and
variance functions. We also found that DPKM has an advantage of using model selection
methods such as GCV function and GACV function.
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