PRELIMINARY DETECTION FOR ARCH-TYPE HETEROSCEDASTICITY IN A NONPARAMETRIC TIME SERIES REGRESSION MODEL

  • HWANG S. Y. (Department of Statistics, Sookmyung Women's University) ;
  • PARK CHEOLYONG (Department of Statistics, Keimyung University) ;
  • KIM TAE YOON (Department of Statistics, Keimyung University) ;
  • PARK BYEONG U. (Department of Statistics, Seoul National University) ;
  • LEE Y. K. (Department of Statistics, Seoul National University)
  • Published : 2005.06.01

Abstract

In this paper a nonparametric method is proposed for detecting conditionally heteroscedastic errors in a nonparametric time series regression model where the observation points are equally spaced on [0,1]. It turns out that the first-order sample autocorrelation of the squared residuals from the kernel regression estimates provides essential information. Illustrative simulation study is presented for diverse errors such as ARCH(1), GARCH(1,1) and threshold-ARCH(1) models.

Keywords

References

  1. BOLLERSLEV, T. (1986). 'Generalized autoregressive conditional heteroscedasticity', Journal of Econometrics, 31, 307-27 https://doi.org/10.1016/0304-4076(86)90063-1
  2. Caru, S. T. (1989). 'Bandwidth selection for kernel estimate with correlated noise', Statistics & Probability Letters, 8, 347-54 https://doi.org/10.1016/0167-7152(89)90043-6
  3. ENGLE, R. F. (1982). 'Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation', Econometrica, 50,987-1007 https://doi.org/10.2307/1912773
  4. HARDLE, W., HALL, P. AND MARRON, J. S. (1988). 'How far are automatically chosen regression smoothing parameters from their optimum?', Journal of the American Statistical Association, 83, 86-95 https://doi.org/10.2307/2288922
  5. HART, J. D. (1991). 'Kernel regression estimation with time series errors', Journal of the Royal Statistical Society, B 53, 173-87
  6. HART, J. D. (1994). 'Automated kernel smoothing of dependent data by using time series cross-validation', Journal of the Royal Statistical Society, B 56, 529-42
  7. HWANG S. Y., BASAWA, I. V. AND REEVES, J. (1994). 'The asymptotic distributions of res idual autocorrelations and related tests of fit for a class of nonlinear time series models', Statistica Sinica, 4, 107-125
  8. HWANG S. Y. AND KIM, T. Y. (2004). 'Power transformation and threshold modeling for ARCH innovations with applications to tests for ARCH structure', Stochastic Processes and their Applications, 110, 295-314 https://doi.org/10.1016/j.spa.2003.11.001
  9. KIM, T. Y., KIM, D., PARK B. U. AND SIMPSON D. G.(2004). 'Nonparametric detection of correlated errors', Biometrika, 91, 491-496 https://doi.org/10.1093/biomet/91.2.491
  10. LI, W. K. AND MAK, T. K. (1994). 'On the squared residual autocorrelations in nonlinear time series with conditional heteroscedasticity', Journal of Time Series Analysis, 15, 627-36 https://doi.org/10.1111/j.1467-9892.1994.tb00217.x
  11. OPSOMER, J., WANG, Y. AND YANG, Y. (2001). 'Nonparametric regression with correlated errors', Statistical Science, 16, 134-53 https://doi.org/10.1214/ss/1009213287
  12. PARK, B. U., KIM, T. Y., PARK, C., LEE, Y. K. AND KIM, D. (2004). Nonparametric estimation of autocorrelation, submitted for publication