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PRELIMINARY DETECTION FOR ARCH-TYPE
HETEROSCEDASTICITY IN A NONPARAMETRIC TIME
SERIES REGRESSION MODEL

S. Y. HWANG!, CHEOLYONG PARK?, TAE YOON Kim?,
BYEONG U. PARK® AND Y. K. LEE?

ABSTRACT

In this paper a nonparametric method is proposed for detecting con-
ditionally heteroscedastic errors in a nonparametric time series regression
model where the observation points are equally spaced on [0, 1]. It turns out
that the first~-order sample autocorrelation of the squared residuals from the
kernel regression estimates provides essential information. Illustrative simu-
lation study is presented for diverse errors such as ARCH(1), GARCH(1,1)
and threshold-ARCH(1) models.
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1. INTRODUCTION

In a seminal paper, Engle(1982, section 5) introduced a linear regression with
conditionally heteroscedastic errors in the context of time series regression mod-
els, viz.,

Yi=z/8+¢ (1.1)
€ = /Ui - Ui (1.2)

where u;’s are iid N(0,1) variates, z; (in the mean function z}3 ) is a vector of
explanatory variables and v; denotes conditional heteroscedastic variance, i.e.,

Uy = Var(ei|\Il,-_1) (13)
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where W;_; is used for the information set consisting of (Y;—1,z;_1), (Yi—2, Z;_2), - -

Typically v; is taken as a lihear combination of squared errors;
vi = g+ 016, (1.4)

which is referred to as first order (Engle’s) ARCH (autoregressive conditional
heteroscedastic) model. Notice that a; = 0 gives usual #id errors for {e;}.

Engle(1982) compared OLS-estimate Bors and WLS-estimate Bwis for the
regression parameter 3. The OLS-estimate Bo 1S is obtained by minimizing, ig-
noring ARCH effect, "7, (Y; —z/0)2. Instead, WLS-estimate Gy 1g is computed,
taking v; into account, by minimizing Y , (¥; — zi3)%/v;. He demonstrated that
the relative efficiency eﬁ(BWLs,BOLS) of Bwrg over ﬁOLs goes to infinity as
ARCH effect becomes prominent. It is noted that eﬁ(BWLS,,@OLS) > 1 with
equality holding if and only if v; is constant(almost surely). Thus, statistical
inference ignoring conditional heteroscedasticity may be distorted. Confidence
interval (of approximate 95% level) for Y; given W;_ is then given by

ziBwrs £ 2,/0;

which must be contrasted with constant v; (with respect toi =1,--- ,n) for the
standard regression. In addition, since ARCH modeling requires more compli-
cated statistical procedures than otherwise, it may be desirable to detect whether
ARCH is present before going into the effort to handle it. Consequently test for
presence of conditional heteroscedasticity in time series regression model deserves
much investigation.

For testing ARCH, Li and Mak(1994) proposed a chi-square test based on
squared residuals (¢2) autocorrelations. Also, Hwang et al.(1994) suggested a
chi-square test, for model diagnostics, using residual (€;) autocorrelations ob-
tained after fitting a random coefficient autoregressive process exhibiting con-
ditional heteroscedasticity. However traditional methods including Engle(1982)
and those mentioned above presumed that the functional form of the mean func-
tion (such as z}3) is known, and hence essentially dealing with parametric case.
Thus it would be useful if one could develop a nonparametric ARCH detection
procedure where the functional form of the mean function is unknown. To this
end this article provides ARCH detection procedures in a simple nonparametric
time series regression model where the observation points are equally spaced. Our
result may give much useful insights to more general nonparametric setup. Error
inference in the nonparametric regression model has mainly focused on correlated
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errors because it is known that they cause fundamental problems such as band-
width selection problem (see, e.g., Chiu(1989), Hart(1991, 1994) and Opsomer
et al.(2001)). Recently Kim et al. (2004) and Park et al. (2004) provided non-
parametric methods for handling correlated errors, and our detection technique
in this paper extends their ideas towards ARCH context via analyzing squared
errors (e2).

In Section 2, a nonparametric detection procedure for conditional heteroscedas-
ticity is proposed and is justified. For illustration, a simulation study is conducted
in Section 3, from which it is shown that our method is easy to implement but
providing reasonably good powers for various ARCH-type models.

2. THE MODEL AND THE PROPOSED DETECTION PROCEDURE

In this article, we consider the following model:
Y = m(z;) + €, i=1,---,n, (2.1)

where m is an unknown smooth function and the error ¢; follows conditionally
heteroscedastic model in (1.2). The regression points z;’s are assumed to be
equidistant on the interval [0, 1], i.e., x; =4/n,i = 1,--- ,n, as is one of the usual
settings considered by several authors including Hardle et al.(1988). Here we do
not assume any specific functional form of conditional heteroscedasticity, and thus
v; may have generalized ARCH, so called first order GARCH(cf. Bollerslev(1986))
defined by
v — 11 = ap + Ci€r_;. (2.2)
First order structure of v; in (1.4) and (2.2) can be straightforwardly extended
to higher order models and thus we retain first order structure in (1.4) and (2.2)
for simplicity of presentation. Also, various (G)ARCH-type processes in the liter-
ature can be accommodated, See, for instance, Hwang and Kim(2004). Consider
the following condition.

(C1). The innovation {u;} is (not necessarily normal) iid sequence of random
variables with mean zero and variance unity. Further, the distribution of u; is

. . d
symmetric about zero, i.e., u; = —u;.

It will be assumed that {e;} is stationary, and define autocovariances 7, and
7 for {€;} and squared process {€2} respectively, viz.,

T = Eleispes) and vy = B(e}p6]) — E(e}4) B(€), p 2 0.
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Here and in what follows * is used in order to indicate squared errors. Consider,
in particular, autocorrelations of lag 1

pr="/v% and T =p]="/7%- (2.3)

It is worth noting for our model defined by (2.1) and (1.2) that (i) when there is
no conditional heteroscedasticity, that is, when €s are iid, it holds that 7 = 0
and p; = 0; (ii) If conditional heteroscedasticity does exist in {¢;}, then 7, > 0
and p; = 0. »

For detecting conditionally heteroscedastic errors, we propose a nonparamet-
ric procedure consisting of the following two steps:

[ Stepl ] Obtain nonparametric estimate 71 for 7. 7; will be specified in (2.6);

[ Step2 | When 7; is significantly greater than zero, conditional heteroscedasticity
in {¢;} is declared.

Note that the null hypothesis is given as the constancy of v; with respect to ¢ and
the alternative is restricted to a class of ARCH-type errors specified in (1.2) and
(1.3). To be more specific with [Step2), analogous to standard one sided test, we
will use as critical region

71 >2/v/n [or, 1 >17/y/n] (2.4)

In fact, the proposed detection rule (2.4) is conservative in comparison with
parametric case. When m(:) is specified (i.e., parametric case), it is known in
time series literature that the SACF’s (sample auto-correlation function) based
on residuals with lower lags (in particular, for lag 1) have asymptotic variance
smaller than unity whereas for higher lags, they converges to unity. See, for
instance, Hwang et al.(1994, Table 6.1). Thus, in view of the fact that for ¢;
following GARCH, the squared process {€2} obeys ARMA (autoregressive moving
average) models, the asymptotic variance of 7; is expected to be smaller than 1
provided m(-) is known. Consequently 2/y/n(1.7/4/n) provides asymptotically
conservative value, compared to parametric case.

We now propose and study nonparametric estimate 7;. Employing Priestly-
Chao estimator of m given by

. 1 &< T — X
m(m)=—TmZK( . 1>Yi
i=1
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where K is kernel and h is the bandwidth, define sample auto-covariances(SACV)
of order p for both the residuals e; and their squares e?:

n—p
SACVy(h) = (n—p)™' Y _ eiesyp — eMe®

i=1
n—p
SACVy(h) = (n—p)™) _elef,, —eWer®
=1
where e; = Y; — m(z;), €V = (n — p)~! S Pes, @ = (n—p)? Y P eirp

e+ — (n —p)~1 P e?, and g2 — (n—p)y~t> P e12+p. Then we have the
following estimators

p1 = SACVy(hs1)/SACVo(hso) (2.5)
and
71 = SACVY (h51)/ SACVS (ho), (2.6)
where for p=0,1
hsp = argminy,.SACV,(h), (2.7)
and
h%, = argminy, ;o SACV; (h). (2.8)

For py, Park et al. (2004) argued some asymptotic optimality properties for p;.
With modifications due to ARCH component, adapting the lines in Kim et al.
(2004) and Park et al. (2004) to the case of squared errors (for 71 = f}) we
provide justifications of ;. First we state regularity conditions on the kernel and
mean function.

(C2-1). The kernel function K is a square-integrable symmetric probability density
with finite second moment. Also, K satisfies Lipschitz condition of order
one, and has a local minimum zero at zero, i.e. K(0) =0.

(C2-2). The bandwidth h satisfies h — 0 and nh? — oo as n — co.

(C2-3). The mean function m is twice continuously differentiable on [0, 1].
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For the statement of the theorem, we introduce
n—1 k
Ci = 75"‘22 (1——> Voo
k=1 n
1 4 2
C2 - (/U,2K) /<(m/l)2 _ /(mll)2> ’
16
2
Cé =Y (/’LLQK) /(m")Q,
2 n—1
k k
C3 = 272 (/K2) +4 (1——) K? (72)7’:’
P n n
Cy = 47§ / K?,

Cs = %0 ( / u2K<u>)2 / K / (m'")2.

We have the following results which give the approximations of the expected
values of SACV;*(h) and SACVy(h).

—

THEOREM 2.1. Suppose that (C1) and (C2) hold. Then

E{SACVI*(h)} = ’7; - C’ln_l + 02h8 + C3n_2h_2 + C’4n_1h3 (29)
+0 (h8 +n th3 + n_2h_2)
E{SACVy(h)} = v§ + Csh* + Cin~'h  + o (R* +n7 A7) . (2.10)

From the above Theorem one may easily notice that SACV}*(h) and SACV{(h)
may serve as good estimators of 7] and ~j respectively because their biases can be
controlled by appropriate choices of h. Since Cy, Ch, C3, C4 and Cy > 0, optimal h
for SACVy(h) and SACVy*(h) can be defined as the minimizer of E(SACV{(h))
and E(SACVy*(h)) respectively. i.e.,

hso = (C3/(4C3))/°n~1/°
and
h%1 = (16C2) " /3{=3Cy + [9CF + 64C2C3]Y/ 2} /Pn =175,

Thus their estimators given by ﬁgo and ﬁgl could be justified. Note that min-
imizing E(SACV{(h)) and E(SACV;*(h)) over h is independent of 73 and ~f.
Now the the choice of the kernel K which satisfies K(0) = 0 is worthy to be
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mentioned. Indeed in the proof of the theorem such kernel makes the n=1a~}
terms in the expansion of E{SACV;*(h)} vanish, and thus reducing the bias of
SACV*(h) as an estimator of «;. In fact Park (et al) (2004) find usefulness
of such kernel in correlated error inference. From our argument one may nat-
urally expect underestimation of 71 due to positive bias from denominator and
negative bias from numerator of 1, i.e. E(SACV} (k%)) — v = —Cin~! and
E(SACVy(h%,)) — v = O(n~%%). It may be noted that underestimation of
71 makes the detection rule (2.4) conservatively declared. Our simulation study
reveals such underestimation tendency clearly.

ProoF. Define the following quantities:
b= mia) - (o)™ K (252 i)
s = € — (nh)” ZK (a:, xj)'ej
Then, we may write e; = b; + s; and thus

(z) Cen 1 PIED 3N

Z E (3621 + b2s2 1 + 4bbiy18isi1 + 5221 + s2s24)

n—l

n_12ZZE (62621 + bZs2,y + dbbjy1sisj1 + s, + s7s2,).

The above equation follows from the facts that Ee; = Eef’ = 0 and that Fe;e; =0
for i # j and Ee%¢; = 0 for ¢ < j since these entail for all ¢ and j

E(b?bi-i-lsH—I) = E(bisib12+1) = E(b?bj+131+1) = E(bisib?_H) = 0,
E(bisiszz+1) = E(biy15i1157) = E(bis; ]+1) E(bj+13j+1312) = 0.

Recall from (C2) that K(0) = 0. Using this it is not too hard to verify that

— Zb%m e }:Zq 711 = Coh® + o(R%),
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h
— Zb2Esl N TR ZZb2ES] = (F)
n_l_ 1 sz?HEsi =172 Zzb2+1ES = (%)

Ci Cs 1
T B - iy S Rt =31 - T o ()

Here, we would like to point out that if K(0Q) # O then the right hand side of the
last equation would be 7§ — 47 K(0)n~th~! + o(n"1A~!). Finally, one can show

C4h3
—1 Z bibiy1E(8isi+1) — mo1e Z Z bibj 1 E(sis41) = Z

This completes the verification of (2.9).
Similar but simpler arguments as above readily yield (2.10). Details are omit-
ted. Main differences lie in the calculations of

lZEs4—iZZEs-2S2— *-I-Qé—i—o(——l—)
i Tl e ALY nh)’

Chht
—ZIPE( 2ZbeEsls] = 2

+ o(h?).

3. SIMULATION STUDY

In our simulation, the mean function m is taken as m(z) = 30023(1 — z)3,
and the kernel K is chosen as a bimodal

K(z) = 630(4a® — 1)%z*I[_1 /9.1 /9 ().

The points z;’s are taken as equidistant on the interval [0,1], i.e., z; = i/n,i =
1,---,n. We consider three cases, viz.,, (1) ARCH(1) (ii) GARCH(1, 1) and (iii)
threshold-ARCH(1). For each cases, simulated sample size n = 200 and 100
replicates are made. The innovations u/s are zero mean 4d normal variates. The
variance of error ¢; is set to be unity for each cases.
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TABLE 3.1 Sample means and standard errors of various statistics:
vi = 0.5 +o1€_,

| ay I statistic l Ao I ot I Filt | 45 I A1 | 1= ﬁ{J
0 mean 1.042 | .050 | .047 | 2.070 | -.024 | -0.013
s.e. 107 | 077 | 072 .572 121 .057
1/6 mean 1.030 | .046 | .041 | 2.216 .303 127
s.e. .142 | .087 | .082 721 .242 .083
2/6 mean 1.063 | .045 | .041 | 3.481 | 1.076 .250
s.e. 190 | .110 | .100 | 3.273 | 1.485 .138
3/6 mean 1.024 | .051 | .050 | 5.479 | 2.324 .328
s.e. .298 154 | 124 | 12.326 | 5.965 139
4/6 mean 960 | .017 | .027 | 7.072 | 3.257 .383
s.e. 304 | .155 | .144 | 16.677 | 8.615 140
5/6 mean 746 | .035 | .056 | 6.508 | 2.920 431
s.e. 359 | .203 | .165 | 14.886 | 6.381 144

TABLE 3.2 Detection rates for ARCH(1): v; = 0.5 + a1el_;

o lof1/6]2/6[3/6]4/6]5/6]
cut | 2/y/n O] 43 ] 75 [ 92 [ 99 [ 99
value | 1.7/s/n [ 0| 54 | 84 | 94 | 99 | 99

ARCH(1)
The errors {¢;} are generated from ARCH(1) given by
€ = /Ui - Ui
v; = ag + 041612—1 3.1)

where the variance of u; is (g + @)~ so that Var(e;) = 1. (3.1) is stationary
when 0 < oy < 1. Notice that p; = 0 and 71 = p] = a1 in our simulation setup.
Simulated sample (of n = 200) are obtained with ag = 1/2 and for each values
of oy =0, 1/6, 2/6, 3/6, 4/6 and 5/6. Table 1 contains some results for p; and
71. Observe that p; divided by corresponding standard error(s.e.) is very close
to zero across all «; values. This supports the validity of p; = 0 for (3.1). Note,
by comparing #; and 7 = aj, that 74 has negative bias and therefore one can
argue that the rule (2.4) is somewhat conservative in detecting ARCH(1) errors.
False detection rate (corresponding to o = 0) turns out to be zero in Table 3.2,
which is partly due to underestimation tendency of 7.
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TABLE 3.3 Sample means and standard errors of various statistics:
v; —0.2v;-1 = 0.5 + 0(1612_1

[ _on Jstatisic] % [ % | A& | % | % | h=4
0 mean 1.030 | .037 | .033 | 2.092 -.034 -0.017
(¢=0) s.e. 104 | .082 | .078 .543 145 072
1 mean 1.066 | .058 | .054 | 2.295 .186 072
s.e. 135 | 095 | .085 .649 227 085

2 mean 1.040 | .032 | .028 | 2.604 .553 157
s.e. .161 .102 | .095 1.844 1.235 124

A4 mean 1.066 | .044 | .040 | 4.945 1.621 .287
s.e. 291 147 | 107 | 14.625 | 4.576 .130

.6 mean 930 | .034 | .026 | 6.857 3.669 .354
s.e. .386 | .193 | .140 | 15.117 | 10.976 152

a mean 739 | .001 | .017 | 8.120 4.098 .396
s.e. 404 | 179 | .168 | 15.993 | 9.839 167

TABLE 3.4 Detection rates for GARCH(1,1): v; — 0.2v;-1 = 0.5 4+ cn€2_,

| a1 [o(¢=0J01]02]04]06[07]
cut | 2/vm 1 22 [51[9[93]9
value | 1.7/\/n 3 31 |66 | 01 | 06 | 98

The percent (out of 100 replications) satisfying #; > 2/4/n increases signifi-
cantly as a; is getting larger; 43, 75, 92, 99 and 99 % for oy =1/6, 2/6, 3/6, 4/6
and 5/6 respectively. Accordingly it seems that our methods provide reasonably
good power for detecting ARCH(1).

GARCH(1, 1)
In order to allow long range dependence of v; on errors, it would be useful to
study GARCH(1, 1) model specified by

U — QUi = g + 0116?_1; ¢>0, a9 >0, ay > 0. (3.2)

This is stationary when ¢ + a; < 1. See Bollerslev(1986). We choose ¢ = 0.2,
ap = 1/2 and a7 =0.1, 0.2, 0.4, 0.6 and 0.7 in the stationarity region. It can be
shown that
71 = pf = a1(l — ¢ — pa1)/(1 — ¢* — 2¢en).
Simulation results are summarized in Tables 3.3 and 3.4. Notice that corre-
sponding to a; = 0 and ¢ = 0, false detection rate is 1(3)% when 7 > 2/y/n
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TABLE 3.5 Sample means and standard errors of various statistics:
v = 0.5+ on1(€7,)* + ana(e;,)?

[[(aa1,012) [statistic | %0 | %1 | A | % | % | #h=p
(0,0) mean | 1.041 | .048 [ .045 | 2125 | -.011 | -0.004
s.e. 106 | .071 | .066 454 142 .068

(0.1,0.5) mean 995 | .026 | .023 § 2.771 .668 178
s.e. 166 | 102 | .095 | 3.046 1.596 107

(0.5,0.1) mean 1.029 | .040 | .037 | 3.133 0.780 .186
s.e. 171 | .083 | .081 | 2.799 1.583 134

(02,08) | mean | 998 | .044 | 036 | 4.485 | 1.834 | .293
s.e. 253 | .135 | .115 | 8.102 | 6.052 | .136

(08,0.2) | mean | 1.006 [ .040 | 028 | 5413 | 2.282 | 289
s.e. 286 | .158 | .130 | 12.778 | 8.287 128

(0.8,0.6) mean 991 | .065 | .050 | 17.440 | 10.594 404
se. 603 | .301 | .152 | 81.276 | 61.433 | .164

(09,1.0) | mean | 422 [ .017 | .056 | 13.198 | 6.445 | .431
s.e. 530 | 167 | .174 | 55.014 | 30.649 150

(71 > 1.7/4/n) is used. Similar conclusions to those in ARCH(1) case continue to
hold.

Threshold-ARCH(1)

ARCH(1) and GARCH(1, 1) are typical examples of symmetric heteroscedas-
tic models in the sense that v; is symmetric with respect to €;_;. As an illustra-
tion of non-symmetric ARCH, consider threshold version of ARCH(1), so called,
threshold-ARCH(1) given by

v; = ag + a11(6f_1)2 + alg(ei"_l)2 (3.3)

where ag > 0, a1 > 0, a1z > 0; € ; = max(e;-1,0) and €;_; = max(—e;—1,0).
It is known that (3.3) is stationary when aj; + a2 < 2. Refer to Hwang and
Kim (2004) for detailed account of threshold-ARCH(1) model. Note that a3 =
a2 = 0 corresponds to the case that ¢;’s are #id.

Tables 3.5 and 3.6 summarize simulation results for various pairs of (a1, @12)
in the stationarity region. Here we fix a9 = 1/2.

It is seen that false detection is of 2(5)% rate for the rule 71 > 2/y/n (f; >
1.7/+/n) and detection power quickly converges to one as threshold-ARCH effect
becomes prominent.



172 S. Y. HWANG et al.

TABLE 3.6 Detection rates of Threshold-ARCH(1) errors:
v = 0.5+ an(€;)? + an2(62,)?

L (o1, anz) [ (0,0) [ (0.1,05) T (0.5,0.1) T (0.2,0.8) [ (0.8,0.2) | (0.8,0.6) | (0.9,1.0) |

cut | 2/v/m 2 56 56 86 91 95 98
value | 1.7/v/n | 5 67 68 97 92 98 99
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