• Title/Summary/Keyword: HepG-2 liver cancer cells

Search Result 104, Processing Time 0.033 seconds

Evaluation of Cytotoxicity Effects of Chalcone Epoxide Analogues as a Selective COX-II Inhibitor in the Human Liver Carcinoma Cell Line

  • Makhdoumi, Pouran;Zarghi, Afshin;Daraei, Bahram;Karimi, Gholamreza
    • Journal of Pharmacopuncture
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2017
  • Objectives: Study of the mechanisms involved in cancer progression suggests that cyclooxygenase enzymes play an important role in the induction of inflammation, tumor formation, and metastasis of cancer cells. Thus, cyclooxygenase enzymes could be considered for cancer chemotherapy. Among these enzymes, cyclooxygenase 2 (COX-2) is associated with liver carcinogenesis. Various COX-2 inhibitors cause growth inhibition of human hepatocellular carcinoma cells, but many of them act in the COX-2 independent mechanism. Thus, the introduction of selective COX-2 inhibitors is necessary to achieve a clear result. The present study was aimed to determine the growth-inhibitory effects of new analogues of chalcone epoxide as selective COX-2 inhibitors on the human hepatocellular carcinoma (HepG2) cell line. Methods: Estimation of both cell growth and the amount of prostaglandin E2 (PGE2) production were used to study the effect of selective COX-2 inhibitors on the hepatocellular carcinoma cell. Cell growth determination has done by MTT assay in 24 h, 48 h and 72 h, and PGE2 production has estimated by using ELYSA kit in 48 h and 72 h. Results: The results showed growth inhibition of the HepG2 cell line in a concentration and time-dependent manner, as well as a reduction in the formation of PGE2 as a product of COX-2 activity. Among the compounds those analogues with methoxy and hydrogen group showed more inhibitory effect than others. Conclusion: The current in-vitro study indicates that the observed significant growth-inhibitory effect of chalcone-epoxide analogues on the HepG2 cell line may involve COX-dependent mechanisms and the PGE2 pathway parallel to the effect of celecoxib. It can be said that these analogues might be efficient compounds in chemotherapy of COX-2 dependent carcinoma specially preventing and treatment of hepatocellular carcinomas.

Screening for in vitro Cytotoxic Activity of Seaweed, Sargassum sp. Against Hep-2 and MCF-7 Cancer Cell Lines

  • Mary, J. Stella;Vinotha, P.;Pradeep, Andrew M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.6073-6076
    • /
    • 2012
  • Discovery of anticancer drugs that kill or disable tumor cells in the presence of normal cells without undue toxicity is a potential challenge for therapeutic care. Several papers in the literature have emphasized the potential implications of marine products such as seaweeds which exhibit antitumor activity. Study attempts to screen the antitumor effect of Sargassum sp, against chosen cell lines such as MCF-7 (Breast cancer) and Hep-2 (Liver Cancer). Ethanol extract of Sargassum sp. was concentrated using a Soxhlet apparatus and dissolved in DMSO. In vitro cytotoxic activity of Sargassum sp at various concentrations ($100{\mu}g/ml-300{\mu}g/ml$) screened for antitumor effect against the chosen cell lines using MTT assay (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, a yellow tetrazole). The study documented that the percentage of cell viability has been reduced with increased concentration, as evidenced by cell death. Sargassum sp extract shows potential cytotoxic activity ($P{\leq}0.05$) with $IC_{50}$ of $200{\mu}g/ml$ and $250{\mu}g/ml$ against Hep-2 and MCF-7 cell lines respectively. The ethanol fraction of Sargassum sp induced cell shrinkage, cell membrane blebbing and formation of apoptotic bodies with evidence of bioactive components as profound influencing factors for anti-tumor effects. Further research need to be explored for the successful application of Sargassum sp as a potent therapeutic tool against cancer.

Potential Therapeutic Efficacy of Curcumin in Liver Cancer

  • Dai, Xin-Zheng;Yin, Hai-Tao;Sun, Ling-Fei;Hu, Xiang;Zhou, Chong;Zhou, Yun;Zhang, Wei;Huang, Xin-En;Li, Xiang-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3855-3859
    • /
    • 2013
  • Purpose: Liver cancer, one of the most common cancers in China, is reported to feature relatively high morbidity and mortality. Curcumin (Cum) is considered as a drug possessing anti-angiogenic, anti-inflammation and anti-oxidation effect. Previous research has demonstrated antitumor effects in a series of cancers. Materials and Methods: In this study the in vitro cytotoxicity of Cum was measured by MTT assay and pro-apoptotic effects were assessed by DAPI staining and measurement of caspase-3 activity. In vivo anti-hepatoma efficacy of Cum was assessed with HepG2 xenografts. Results: It is found that Cum dose-dependently inhibited cell growth in HepG2 cells with activation of apoptosis. Moreover, Cum delayed the growth of liver cancer in a dose-dependent manner in nude mice. Conclusions: Cum might be a promising phytomedicine in cancer therapy and further efforts are needed to explore this therapeutic strategy.

Mechanism of Inhibition of HepG2 Cell Proliferation by a Glycoprotein from Hizikia fusiformis (톳(Hizikia fusiformis) 당단백질에 의한 HepG2 세포 증식 억제기전)

  • Ryu, Jina;Hwang, Hye-Jung;Kim, In-Hye;Nam, Taek-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2012
  • Hizikia fusiformis, a brown alga that is widely consumed in Korea, Japan, and China, possesses a number of potentially beneficial compounds, including antioxidants and anticoagulants. However, the molecular mechanisms of H. fusiformis in hepatoma cells have not been elucidated. This study investigated the antiproliferative effect and mechanism of action of a glycoprotein from H. fusiformis (HFGP) in HepG2 human hepatoma cells. In an MTS assay, 25 ${\mu}g/mL$ HFGP inhibited the proliferation of HepG2 cells by $52.36{\pm}2.37%$. HFGP caused the dose-dependent growth inhibition of HepG2 cells by inducing apoptosis and a sub-G1 phase arrest. The antiproliferative activity of HFGP was confirmed based on the expression of several apoptosis-related proteins, which was assessed by Western blot analysis. The expressions of Fas, Fas-associated death domain protein, Bax, and Bad was significantly up-regulated in HFGP-treated cells, and HFGP induced the translocation of Bax to mitochondria and the release of cytochrome c into the cytosol. Therefore, HFGP might be useful in the treatment of liver cancer.

Cytotoxic Activities and Antioxidative Activities Against Liver Cancer Cell of Albizzia root (합환근의 항산화효과와 간암세포에 대한 세포독성)

  • 강병수;이갑득
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.287-292
    • /
    • 2002
  • To find new inhibitory effects from oriental drugs, Albizziae root was extracted in methanol and the extracted was stepwisely fractionated by hexane, chloroform, ethylacetate, butanol and water. In cytotoxic effect of Albizziae root fractions against cancer cell lines including human hepatoma cells(HepG2) were investigated. Expecially the butanol fraction exhibited a inhibition effects on the growth of human hepatoma cells(HepG2). It inhibited of HepG2 cells with the value of IC50. The activities of qutathione after B(a)P treatment were markedly decreased than control, but those levels were increased by the treatment of Albizziae root methanol fraction. The activity of glutathione-S-transferase after B(a)P treatment were markedly decreased than control, but those levels were increased by the treatment of Albizziae root methanol traction. Induction of phase II enzymes is a major mechanism of chemoprevention. The induction levels of quinone reductase(QR) activity in cultured murine hepatoma(Hepa IcIc7)cell by methanol extract of Albizziae root were measured. Among the tested tractions, the extracts of butanol were found to induce QR activities over 2.8 fold than control. These results suggest that Albizziae root has chemopreventive Potential by inducing QR activities and GST levels and increasing GSH

Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways

  • Hwang, Yu-Jin;Lee, Eun-Ju;Kim, Haeng-Ran;Hwang, Kyung-A
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.611-616
    • /
    • 2013
  • Luteolin-7-O-glucoside (LUT7G), a flavone subclass of flavonoids, has been found to increase anti-oxidant and anti-inflammatory activity, as well as cytotoxic effects. However, the mechanism of how LUT7G induces apoptosis and regulates cell cycles remains poorly understood. In this study, we examined the effects of LUT7G on the growth inhibition of tumors, cell cycle arrest, induction of ROS generation, and the involved signaling pathway in human hepatocarcinoma HepG2 cells. The proliferation of HepG2 cells was decreased by LUT7G in a dose-dependent manner. The growth inhibition was due primarily to the G2/M phase arrest and ROS generation. Moreover, the phosphorylation of JNK was increased by LUT7G. These results suggest that the anti-proliferative effect of LUT7G on HepG2 is associated with G2/M phase cell cycle arrest by JNK activation.

Alkaloids from Beach Spider Lily (Hymenocallis littoralis) Induce Apoptosis of HepG-2 Cells by the Fas-signaling Pathway

  • Ji, Yu-Bin;Chen, Ning;Zhu, Hong-Wei;Ling, Na;Li, Wen-Lan;Song, Dong-Xue;Gao, Shi-Yong;Zhang, Wang-Cheng;Ma, Nan-Nan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9319-9325
    • /
    • 2014
  • Alkaloids are the most extensively featured compounds of natural anti-tumor herbs, which have attracted much attention in pharmaceutical research. In our previous studies, a mixture of major three alkaloid components (5, 6-dihydrobicolorine, 7-deoxy-trans-dihydronarciclasine, littoraline) from Hymenocallis littoralis were extracted, analyzed and designated as AHL. In this paper, AHL extracts were added to human liver hepatocellular cells HepG-2, human gastric cancer cell SGC-7901, human breast adenocarcinoma cell MCF-7 and human umbilical vein endothelial cell EVC-304, to screen one or more AHL-sensitive tumor cell. Among these cells, HepG-2 was the most sensitive to AHL treatment, a very low dose ($0.8{\mu}g/ml$) significantly inhibiting proliferation. The non-tumor cell EVC-304, however, was not apparently affected. Effect of AHL on HepG-2 cells was then explored. We found that the AHL could cause HepG-2 cycle arrest at G2/M checkpoint, induce apoptosis, and interrupt polymerization of microtubules. In addition, expression of two cell cycle-regulated proteins, CyclinB1 and CDK1, was up-regulated upon AHL treatment. Up-regulation of the Fas, Fas ligand, Caspase-8 and Caspase-3 was observed as well, which might imply roles for the Fas/FsaL signaling pathway in the AHL-induced apoptosis of HepG-2 cells.

Effects of Cordyceps militaris on $CCl_4$ - Induced Liver Damage and Cancer Cell (HepG2 Cell) Growth (동충하초가 사염화탄소로 유발된 간 손상 및 간암세포증식에 미치는 영향)

  • Kim San;Hwang Choong yeon;Kim Nam kwen;Park Min cheul;Kim Jin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.684-692
    • /
    • 2002
  • Cordyceps militaris has been known as a Chinese traditional medicine for the treatment of tuberculosis, asthma, kidney disease, debility and fatigue etc. This study was attempted to investigate the therapeutic effect of C. militaris extract on the cytotoxic activity of HepG2, human hepatocellular carcinoma cells and the liver damage induced by carbon tetrachloride in SD rats. C. militaris extracts inhibited significantly the proliferation of HepG2 cells in vitro. Carbon tetrachloride(CCl₄) caused a significant an increase in liver weight, serum aspartate aminotransferase(AST) and alanine aminotransferase(ALT) activity, alkaline phosphatase(ALP), serum thiobarbituric acid reactive substances (TBARS), microsomal TBARS, and decrease in microsomal detoxification enzymes (cytochrome P-450, P-450 reductase, cytochrome b5, b5 reductase). TBARS and ALP in serum pretreated with C. militaris extracts (300mg/kg/day, 600mg/kg/day) was significantly reduced compared to control group(CCl₄). Cytochrome b5 and b5 reductase activities were significantly increased in CM300 (300 mg/kg/day) and CM600 group(600 mg/kg/day), and cytochrome P-450 reductase was significantly increased in CM300 group. Pretreatment (100, 300, and 600 mg/kg/day for 7 days) of C. militaris with CCl₄ was significantly inhibited the accumulation microsomal TBARS and the significantly increased in the cytochrome P-450 activity. These results suggested that C. militaris (300mg/kg/day for 7 days) has appreciable therapeutic effect on CCl₄ induced hepatotoxicity.

In vitro anti-cancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines (꽃송이버섯(Sparassis latifolia) 추출물 소수성 분획의 항암 활성)

  • Choi, Moon-Hee;Han, Hyo-Kyung;Lee, Yong-Jo;Jo, Han-Gyo;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.304-310
    • /
    • 2014
  • The use of mushrooms has immense potential in many diverse applications. Until now, more than 3,000 species are consumed around the world, and more than 100 have shown promising clinical activity against cancer and other chronic diseases. Sparassis latifolia (formerly S. crispa) is an edible mushroom that harbors ${\beta}$-glucan reported to possess immunostimulatory and anticancer properties. However there have been no reports on the anticancer activity of hydrophobic fractions of S. latifolia. In this study, the anticancer activities of S. latifolia extract and hydrophobic fractions were investigated using AGS (stomach cancer), A529 (lung cancer), and HepG2 (liver cancer) cell lines. In cytotoxicity results of A529 cells, fractions of A2, A3, A4, A6, A7, A8, A9, and A10 in all 12 fractions show low $IC_{50}$ values. For HepG2 cells, A7 fraction results in the lowest $IC_{50}$ value while A7, A8, and A11 fractions show low $IC_{50}$ values in AGS cells. S. latifolia extract lead to low cell viability in cancer cells, compared to positive control of paclitaxel. A compound with molecular weight of 181 were detected using HPLC-MS but not identified yet. As a result, the hydrophobic fractions of S. latifolia EtOH extract would be a possible candidate as natural anticancer agents in the future.

Glycoantigen Biosyntheses of Human Hepatoma and Colon Cancer Cells are Dependent on Different N-Acetylglucosaminyltransferase-III and -V Activities

  • Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.891-900
    • /
    • 2004
  • UDP-N-Acetylglucosamine(GlcNAc):$\beta$1,4-D-mannoside$\beta$-l ,4N-acetylglucosaminyltransferase-III (GnT-III) and UDP-N-GlcNAc:$\alpha$-6-D-mannosid$\beta$-1,6N-acetylglucosaminyltransferase-V(GnT - V) activities were determined in human hepatoma cell lines and metastatic colon cancer cells, and their activities were compared with those of normal liver cells and fetal hepatocytes. GnT-III activities were higher than those of GnT-V in hepatic carcinoma cells. When the two enzyme activities were assayed in highly metastatic colon cancer cells, GnT - V activities were much higher than those of GnT-III. When GlcN, GlcN-biant-PA and UDP-GlcNAc were used as substrates, the enzymes displayed different kinetic properties between hepatic and colon cancer cells, depending on their metastatic potentials. Normal cells of two origins had characteristically very low levels of GnT-III and -V activities, whereas hepatoma and colon cancer cells contained high levels of activities. These data were supported by RT-PCR and Northern blot analyses, showing that the expression of GnT-III and -V mRNAs were increased in proportion to the enzymatic activities. The increased GnT-III, md -V activities were also correlated with increased glycosylation of the cellular glycoproteins in hepatoma and colon cancer cells, as examined by lectin blotting analysis by using wheat germ glutinin (WGA), erythroagglutinating phytohemagglutinin (E-PHA), leukoagglutinating phytohemagglutinin (L-PHA), and concanavalin A (Con A). Treatment with retinoic acid, a differentiation agent, resulted in decreases of both GnT-III and -V activities of HepG2 and HepG3 cells. In colon carcinoma cells, however, treatment with retinoic acid resulted in a reduction of GnT-V activity, but not with GnT-III activity. Although the mechanism underlying the induction of these mzymes is unclear, oligosaccharides in many glycoproteins have been observed of cancer cells.