• Title/Summary/Keyword: Heisenberg type group

Search Result 9, Processing Time 0.023 seconds

FRACTIONAL INTEGRAL ALONG HOMOGENEOUS CURVES IN THE HEISENBERG GROUP

  • KIM JOONIL
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.499-516
    • /
    • 2005
  • We obtain the type set for the fractional integral operator along the curve $(t,t^2,\;{\alpha}t^3)$ on the three dimensional Heisenberg group when $\alpha\neq{\pm}1/6$. The proof is based on the Fourier inversion formula and the angular Littlewood-Paley decompositions in the Heisenberg group in [5].

ESTIMATES FOR THE RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP

  • Wang, Yanhui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1255-1268
    • /
    • 2022
  • We consider the Schrödinger type operator 𝓛 = (-𝚫n)2 + V2 on the Heisenberg group ℍn, where 𝚫n is the sub-Laplacian and the non-negative potential V belongs to the reverse Hölder class RHs for s ≥ Q/2 and Q ≥ 6. We shall establish the (Lp, Lq) estimates for the Riesz transforms T𝛼,𝛽,j = V2𝛼𝛁jn𝓛-𝛽, j = 0, 1, 2, 3, where 𝛁n is the gradient operator on ℍn, 0 < α ≤ 1-j/4, j/4 < 𝛽 ≤ 1, and 𝛽 - 𝛼 ≥ j/4.

Lp ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP

  • Yu, Liu
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.425-443
    • /
    • 2010
  • We investigate the Schr$\ddot{o}$dinger type operator $H_2\;=\;(-\Delta_{\mathbb{H}^n})^2+V^2$ on the Heisenberg group $\mathbb{H}^n$, where $\Delta_{\mathbb{H}^n}$ is the sublaplacian and the nonnegative potential V belongs to the reverse H$\ddot{o}$lder class $B_q$ for $q\geq\frac{Q}{2}$, where Q is the homogeneous dimension of $\mathbb{H}^n$. We shall establish the estimates of the fundamental solution for the operator $H_2$ and obtain the $L^p$ estimates for the operator $\nabla^4_{\mathbb{H}^n}H^{-1}_2$, where $\nabla_{\mathbb{H}^n}$ is the gradient operator on $\mathbb{H}^n$.

HARDY TYPE ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER OPERATORS ON THE HEISENBERG GROUP

  • Gao, Chunfang
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.235-254
    • /
    • 2022
  • Let ℍn be the Heisenberg group and Q = 2n + 2 be its homogeneous dimension. Let 𝓛 = -∆n + V be the Schrödinger operator on ℍn, where ∆n is the sub-Laplacian and the nonnegative potential V belongs to the reverse Hölder class $B_{q_1}$ for q1 ≥ Q/2. Let Hp𝓛(ℍn) be the Hardy space associated with the Schrödinger operator 𝓛 for Q/(Q+𝛿0) < p ≤ 1, where 𝛿0 = min{1, 2 - Q/q1}. In this paper, we consider the Hardy type estimates for the operator T𝛼 = V𝛼(-∆n + V )-𝛼, and the commutator [b, T𝛼], where 0 < 𝛼 < Q/2. We prove that T𝛼 is bounded from Hp𝓛(ℍn) into Lp(ℍn). Suppose that b ∈ BMO𝜃𝓛(ℍn), which is larger than BMO(ℍn). We show that the commutator [b, T𝛼] is bounded from H1𝓛(ℍn) into weak L1(ℍn).

FINITE GROUP ACTIONS ON THE 3-DIMENSIONAL NILMANIFOLD

  • Goo, Daehwan;Shin, Joonkook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.18 no.2
    • /
    • pp.223-232
    • /
    • 2005
  • We study only free actions of finite groups G on the 3-dimensional nilmanifold, up to topological conjugacy which yields an infra-nilmanifold of type 2.

  • PDF

HAUSDORFF OPERATORS ON WEIGHTED LORENTZ SPACES

  • Sun, Qinxiu;Fan, Dashan;Li, Hongliang
    • Korean Journal of Mathematics
    • /
    • v.26 no.1
    • /
    • pp.103-127
    • /
    • 2018
  • This paper is dedicated to studying some Hausdorff operators on the Heisenberg group ${\mathbb{H}}^n$. The sharp bounds on the strong-type weighted Lorentz spaces ${\Lambda}^p_u(w)$ and the weak-type weighted Lorentz spaces ${\Lambda}^{p,{\infty}}_u(w)$ are investigated. Especially, the results cover the classical power weighted space $L^{p,q}_{\alpha}$. The results are also extended to the product spaces ${\Lambda}^{p_1}_{u_1}(w_1){\times}{\Lambda}^{p_2}_{u_2}(w_2)$, especially for $L^{p_1,q_1}_{{\alpha}_1}{\times}L^{p_2,q_2}_{{\alpha}_2}$. Our proofs are quite different from those in previous documents since the duality principle, and some well-known inequalities concerning the weights are adopted. The results recover the existing results as well as we obtain new results in the new and old settings.