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FREE ACTIONS OF FINITE GROUPS ON THE
3–DIMENSIONAL NILMANIFOLD FOR TYPE 1

Joonkook Shin*

Abstract. We study free actions of finite groups on the 3-dimensional
nilmanifold for Type 1 and classify all such group actions, up to topological
conjugacy. This work supplies missing one in [1, Theorem 3.11.].

1. Introduction

Infra-nilmanifolds are determined uniquely by their fundamental groups,

called almost Bieberbach groups. It is known ([3; Proposition 6.1.]) that

there are 15 classes of distinct closed 3-dimensional manifolds M with a

Nil-geometry up to Seifert local invariant.

The general question of classifying finite group actions on a closed 3-

manifold is very hard. However, the actions on a 3-dimensional nilmanifold

can be understood easily by the works of Bieberbach, L. Auslander and

Waldhausen([5, 6, 9]). Free actions of finite, cyclic and abelian groups on

the 3-torus were studied in [4], [7] and [8], respectively. It is interesting that

if a finite group acts freely on the 3-dimensional nilmanifold with the first

homology Z2, then it is cyclic [2]. Free actions of finite abelian groups on the

3-dimensional nilmanifold with the first homology Z2⊕Zp were classified in

[1].

Let H be the 3–dimensional Heisenberg group; i.e. H consists of all 3× 3

real upper triangular matrices with diagonal entries 1. That is,

H =

{[
1 x z
0 1 y
0 0 1

]
: x, y, z ∈ R

}
.
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Thus H is a simply connected, 2-step nilpotent Lie group.

For each integer p > 0, let

Γp =

{[
1 l n

p

0 1 m
0 0 1

] ∣∣∣∣∣ l, m, n ∈ Z
}

.

Then Γ1 is the discrete subgroup of H consisting of all integral matrices and

Γp is a lattice of H containing Γ1 with index p. Clearly

H1(H/Γp; Z) = Γp/[Γp,Γp] = Z2 ⊕ Zp.

Note that these Γp
′s produce infinitely many distinct nilmanifolds Np =

H/Γp covered by N1. In this paper, we shall find all possible finite groups

acting freely on each Np by utilizing the method used in [1] and classify all

such group actions, up to topological conjugacy. We shall use all notations

and most of the Introduction, Section 2 and Section 3 of [1]. This work

supplies missing one in [1, Theorem 3.11.].

Let π = 〈t1, t2, t3, | [t2, t1] = tn3 , [t3, t1] = [t3, t2] = 1〉 be an almost

Bieberbach group and N be a normal nilpotent subgroup of π with G = π/N

finite. For the almost Bieberbach group π, we find all normal nilpotent

subgroups N of π, and classify (N,π) up to affine conjugacy.

2. Free actions of finite groups on the 3-dimensional nilmanifold

for Type 1

Now we shall find all possible finite groups acting freely (up to topolog-

ical conjugacy) on the 3-dimensional nilmanifold Np which yield an orbit

manifold homeomorphic to H/π. This was done by the program MATHE-

MATICA[10] and hand-checked.

Lemma 1. Let N be a normal nilpotent subgroup of π and isomorphic

to Γp. Then N can be represented by a sets of generators

N = 〈td1
1 tm2 tn1

3 , td2
2 tn2

3 , t
nd1d2

p

3 〉,
where d1 and d2 are divisors of p, and

0 ≤ m < d̄ = gcd(d1, d2), 0 ≤ ni <
nd1d2

p
,

pm

d1d2
∈ Z.



FREE ACTIONS OF FINITE GROUPS ON THE 3–DIMENSIONAL NILMANIFOLD 439

Proof. Recall that π = 〈t1, t2, t3, | [t2, t1] = tn3 , [t3, t1] = [t3, t2] = 1〉.
Let N be a normal nilpotent subgroup of π and isomorphic to Γp. Then by

Proposition 3.1 in [1], we have

N = 〈 td1
1 tm2 t`3, td2

2 tr3, t
nd1d2

p

3 〉,
(

0 ≤ m < d2, 0 ≤ `, r <
nd1d2

p

)
.

Recall that the normalizer NAff(H)(π) of π has been obtained [1, Theorem

3.11]:

NAff(H)(π1) =

{([
1 x z
0 1 y
0 0 1

]
,

([
u
v

]
,

[
a b
c d

]))}
,

where
[

a b
c d

]
∈ GL(2,Z), if ad− bc = 1, then

x + u =
1
2
ab +

k

n
, y + v = −1

2
cd +

k′

n
(k, k′ ∈ Z),

if ad− bc = −1, then

x + u = −1
2
ab +

k

n
, y + v =

1
2
cd +

k′

n
(k, k′ ∈ Z).

Let d̄ = gcd(d1, d2). Then there exist s, t ∈ Z such that d̄ = sd1 + td2.

Also there exist q, w ∈ Z such that m = d̄q + w (0 ≤ w < d̄). Thus we

have d̄q = sqd1 + tqd2. Therefore it is not hard to see that

N ∼ 〈 t1d1tm−sqd1
2 t`

′
3 , td2

2 tr3, t
nd1d2

p

3 〉 = 〈 t1d1tw2 t`
′′

3 , td2
2 tr3, t

nd1d2
p

3 〉,

by using
([

1 0 0
0 1 sq

2
0 0 1

]
,

([
0
0

]
,

[
1 0

−sq 1

]))
∈ NAff(H)(π1).

If we set n1 = `′′ and n2 = r, then we have

N ∼ 〈 t1d1tw2 tn1
3 , td2

2 tn2
3 , t

nd1d2
p

3 〉.

Note that the relation t1(td1
1 tm2 t`3)t

−1
1 = (td1

1 tm2 t`3)(t
nd1d2

p

3 )(−
pm

d1d2
) ∈ N shows

that pm
d1d2

∈ Z. Therefore we have proved the lemma. ¤
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Remark. The condition pm
d1d2

∈ Z in the above lemma is crucial to deter-

mine the number of affinely non-conjugacy classes when d1, d2 and p are

given. In fact, for d̄ = (d1, d2) and p = kD, where D is the least common

multiple of d1 and d2, we have pm
d1d2

∈ Z if and only if km
d̄
∈ Z. Let q = (d̄, k).

Then km
d̄
∈ Z if and only if k′m

d̄′ ∈ Z, where k = qk′, d̄ = qd̄′, (k′, d̄′) = 1.

Thus d̄′ is a divisor of m. Since 0 ≤ m < d̄ = qd̄′, we can get

m = 0, d̄′, · · · , (q − 1)d̄′.

Theorem 2. Let Nm and Nm′
be normal nilpotent subgroups of π and

isomorphic to Γp whose sets of generators are

Nm = 〈 t1d1tm2 t`3, td2
2 tr3, t

nd1d2
p

3 〉, Nm′
= 〈 t1d1tm

′
2 t`

′
3 , td2

2 tr
′

3 , t
nd1d2

p

3 〉.
If m 6= m′, then Nm is not affinely conjugate to Nm′

.

Proof. Assume that Nm is affinely conjugate to Nm′
. Then there exists

µ =

([
1 x z
0 1 y
0 0 1

]
,

([
u
v

]
,

[
a b
c d

]))
∈ NAff(H)(π1)

satisfying either

(∗) µ(t1d1t2
mt`3)µ

−1 = td1
1 t2

m′
t`
′

3 , µ(td2
2 tr3)µ

−1 = td2
2 tr

′
3 ,

or

(∗∗) µ(t1d1t2
mt`3)µ

−1 = td2
2 t3

r′ , µ(td2
2 tr3)µ

−1 = td1
1 t2

m′
t`
′

3 .

From (∗), we obtain that
[

a b
c d

]
=

[
1 0
c 1

]
, and cd1 = m−m′ 6= 0. Note

that 0 ≤ m, m′ < d̄ by Lemma 1. Since d1 ≤ |c|d1 = |m −m′| < d̄ ≤ d1,

we have a contradiction. However in (∗∗), we obtain the following relations:

bd2 = d1, dd2 = m′, ad1 + bm = 0, cd1 + dm = d2.

The relation dd2 = m′ < d2 induces d = 0, m′ = 0 and bc = 1. Therefore

the relation |a|d1 = | − bm| = |m| < d̄ ≤ d1 implies m = 0, which is a

contradiction. ¤

Let N = 〈 t1d1tm2 t`3, td2
2 tr3, t

nd1d2
p

3 〉 be a normal nilpotent subgroup of π.

The following theorem shows the conditions of affine conjugacy to N for

given d1, d2 and m.
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Theorem 3. Let N and N ′ be normal nilpotent subgroups of π whose

sets of generators are

N = 〈 t1d1tm2 t`3, td2
2 tr3, t

nd1d2
p

3 〉, N ′ = 〈 t1d1tm2 t`
′

3 , td2
2 tr

′
3 , t

nd1d2
p

3 〉.

Then N ∼ N ′ is equivalent to either

r ≡ r′ (mod d2), ` ≡ (`′ +
m(r − r′)

d2
) (mod d1),

or m = 0, d1 = d2 and d1 is a divisor of ` + r′ and r + `′.

Proof. Assume that N is affinely conjugate to N ′. Then there exists µ ∈
NAff(H)(π1) satisfying either

(∗) µ(t1d1t2
mt`3)µ

−1 = td1
1 t2

mt`
′

3 , µ(td2
2 tr3)µ

−1 = td2
2 tr

′
3 ,

or

(∗∗) µ(t1d1t2
mt`3)µ

−1 = td2
2 t3

r′ , µ(td2
2 tr3)µ

−1 = td1
1 t2

mt`
′

3 .

From (∗), we obtain the following relations:

bd2 = 0, dd2 = d2, ad1 + bm = d1, cd1 + dm = m.

Thus we obtain
[

a b
c d

]
=

[
1 0
0 1

]
. Using this, we can get

x + u =
r − r′

nd2
, y + v = −`− `′

nd1
+

m(r − r′)
nd1d2

.

Since x + u and y + v are multiples of 1
n , we have

r − r′

d2
∈ Z and

`− `′

d1
− m(r − r′)

d1d2
∈ Z.

Therefore we can conclude that

r ≡ r′ (mod d2), ` ≡ (`′ +
m(r − r′)

d2
) (mod d1).

The converse is easy by using
([ 1 0 0

0 1 `′−`
nd1

0 0 1

]
,

([
r−r′
nd2

m(r−r′)
nd1d2

]
,

[
1 0
0 1

]))
∈ NAff(H)(π1).
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However in (∗∗), we obtain the following relations:

bd2 = d1, dd2 = m, ad1 + bm = 0, cd1 + dm = d2.

The relation 0 ≤ dd2 = m < d2 induces d = 0 and m = 0. Thus we have

a = 0, b = c = 1, d1 = d2.

Using this, we can get x + u = − `+r′
nd2

, y + v = r+`′
nd1

. Since x + u and y + v

are multiples of 1
n , we have

` + r′

d2
∈ Z and

r + `′

d1
∈ Z.

Therefore d1(= d2) is a divisor of ` + r′ and r + `′. The converse is easy by

([
1 0 0
0 1 0
0 0 1

]
,

([
− `+r′

nd1
r+`′
nd1

]
,

[
0 1
1 0

]))
∈ NAff(H)(π1). ¤

According to the above Remark, Theorems 2 and 3, we obtain the fol-

lowing result, which corrects the error in [1, Theorem 3.11.].

Corollary 4. Let N be a normal nilpotent subgroup of π whose set of

generators is

N = 〈 t1d1tm2 t`3, td2
2 tr3, t

nd1d2
p

3 〉.
If n > p

min{d1,d2} , then the number of affine conjugacy classes of normal

nilpotent subgroups is





qd1d2 if d1 6= d2,

d1d2 − d1

2
+ 1 if d1 = d2, m = 0, d1 ∈ 2N,

d1d2 − d1 − 1
2

if d1 = d2, m = 0, d1 ∈ 2N− 1,





where q = (gcd(d1, d2), k), k can be obtained from p = kD and D is the

least common multiple of d1 and d2. ¤

Example. Assume Z2 × Zn acts freely on the nilmanifold N2 = H/Γ2

which yields an orbit manifold homeomorphic to H/π. Then there exist 2

distinct affine conjugacy classes of free actions:

N1 = 〈 t12, t2, tn3 〉, N2 = 〈 t12t3, t2, tn3 〉.
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