FREE ACTIONS OF FINITE GROUPS ON THE 3-DIMENSIONAL NILMANIFOLD FOR TYPE 1

Joonkook Shin*

Abstract

We study free actions of finite groups on the 3-dimensional nilmanifold for Type 1 and classify all such group actions, up to topological conjugacy. This work supplies missing one in [1, Theorem 3.11.].

1. Introduction

Infra-nilmanifolds are determined uniquely by their fundamental groups, called almost Bieberbach groups. It is known ([3; Proposition 6.1.]) that there are 15 classes of distinct closed 3 -dimensional manifolds M with a Nil-geometry up to Seifert local invariant.

The general question of classifying finite group actions on a closed 3manifold is very hard. However, the actions on a 3 -dimensional nilmanifold can be understood easily by the works of Bieberbach, L. Auslander and Waldhausen([5, 6, 9]). Free actions of finite, cyclic and abelian groups on the 3 -torus were studied in [4], [7] and [8], respectively. It is interesting that if a finite group acts freely on the 3 -dimensional nilmanifold with the first homology \mathbb{Z}^{2}, then it is cyclic [2]. Free actions of finite abelian groups on the 3-dimensional nilmanifold with the first homology $\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}$ were classified in [1].

Let \mathcal{H} be the 3 -dimensional Heisenberg group; i.e. \mathcal{H} consists of all 3×3 real upper triangular matrices with diagonal entries 1 . That is,

$$
\mathcal{H}=\left\{\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]: x, y, z \in \mathbb{R}\right\} .
$$

[^0]Thus \mathcal{H} is a simply connected, 2 -step nilpotent Lie group.
For each integer $p>0$, let

$$
\Gamma_{p}=\left\{\left.\left[\begin{array}{ccc}
1 & l & \frac{n}{p} \\
0 & 1 & m \\
0 & 0 & 1
\end{array}\right] \right\rvert\, l, m, n \in \mathbb{Z}\right\}
$$

Then Γ_{1} is the discrete subgroup of \mathcal{H} consisting of all integral matrices and Γ_{p} is a lattice of \mathcal{H} containing Γ_{1} with index p. Clearly

$$
\mathrm{H}_{1}\left(\mathcal{H} / \Gamma_{p} ; \mathbb{Z}\right)=\Gamma_{p} /\left[\Gamma_{p}, \Gamma_{p}\right]=\mathbb{Z}^{2} \oplus \mathbb{Z}_{p}
$$

Note that these $\Gamma_{p}{ }^{\prime}$ s produce infinitely many distinct nilmanifolds $\mathcal{N}_{p}=$ \mathcal{H} / Γ_{p} covered by \mathcal{N}_{1}. In this paper, we shall find all possible finite groups acting freely on each \mathcal{N}_{p} by utilizing the method used in [1] and classify all such group actions, up to topological conjugacy. We shall use all notations and most of the Introduction, Section 2 and Section 3 of [1]. This work supplies missing one in [1, Theorem 3.11.].

Let $\pi=\left\langle t_{1}, t_{2}, t_{3}, \mid\left[t_{2}, t_{1}\right]=t_{3}^{n}, \quad\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=1\right\rangle$ be an almost Bieberbach group and N be a normal nilpotent subgroup of π with $G=\pi / N$ finite. For the almost Bieberbach group π, we find all normal nilpotent subgroups N of π, and classify (N, π) up to affine conjugacy.

2. Free actions of finite groups on the 3 -dimensional nilmanifold for Type 1

Now we shall find all possible finite groups acting freely (up to topological conjugacy) on the 3 -dimensional nilmanifold \mathcal{N}_{p} which yield an orbit manifold homeomorphic to \mathcal{H} / π. This was done by the program MATHEMATICA[10] and hand-checked.

Lemma 1. Let N be a normal nilpotent subgroup of π and isomorphic to Γ_{p}. Then N can be represented by a sets of generators

$$
N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{n_{1}}, t_{2}^{d_{2}} t_{3}^{n_{2}}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle
$$

where d_{1} and d_{2} are divisors of p, and

$$
0 \leq m<\bar{d}=\operatorname{gcd}\left(d_{1}, d_{2}\right), \quad 0 \leq n_{i}<\frac{n d_{1} d_{2}}{p}, \quad \frac{p m}{d_{1} d_{2}} \in \mathbb{Z}
$$

Proof. Recall that $\pi=\left\langle t_{1}, t_{2}, t_{3}, \mid\left[t_{2}, t_{1}\right]=t_{3}^{n}, \quad\left[t_{3}, t_{1}\right]=\left[t_{3}, t_{2}\right]=1\right\rangle$. Let N be a normal nilpotent subgroup of π and isomorphic to Γ_{p}. Then by Proposition 3.1 in [1], we have

$$
N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle, \quad\left(0 \leq m<d_{2}, 0 \leq \ell, r<\frac{n d_{1} d_{2}}{p}\right) .
$$

Recall that the normalizer $N_{\mathrm{Aff}(\mathcal{H})}(\pi)$ of π has been obtained [1, Theorem 3.11]:

$$
N_{\operatorname{Aff}(\mathcal{H})}\left(\pi_{1}\right)=\left\{\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right)\right\}
$$

where $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in G L(2, \mathbb{Z})$, if $a d-b c=1$, then

$$
x+u=\frac{1}{2} a b+\frac{k}{n}, \quad y+v=-\frac{1}{2} c d+\frac{k^{\prime}}{n} \quad\left(k, \quad k^{\prime} \in \mathbb{Z}\right),
$$

if $a d-b c=-1$, then

$$
x+u=-\frac{1}{2} a b+\frac{k}{n}, \quad y+v=\frac{1}{2} c d+\frac{k^{\prime}}{n} \quad\left(k, \quad k^{\prime} \in \mathbb{Z}\right) .
$$

Let $\bar{d}=\operatorname{gcd}\left(d_{1}, d_{2}\right)$. Then there exist $s, t \in \mathbb{Z}$ such that $\bar{d}=s d_{1}+t d_{2}$. Also there exist $q, w \in \mathbb{Z}$ such that $m=\bar{d} q+w(0 \leq w<\bar{d})$. Thus we have $\bar{d} q=s q d_{1}+t q d_{2}$. Therefore it is not hard to see that

$$
N \sim\left\langle t_{1}^{d_{1}} t_{2}^{m-s q d_{1}} t_{3}^{\ell^{\prime}}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle=\left\langle t_{1}^{d_{1}} t_{2}^{w} t_{3}^{\ell^{\prime \prime}}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle
$$

by using

$$
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{s q}{2} \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
-s q & 1
\end{array}\right]\right)\right) \in N_{\mathrm{Aff}(\mathcal{H})}\left(\pi_{1}\right) .
$$

If we set $n_{1}=\ell^{\prime \prime}$ and $n_{2}=r$, then we have

$$
N \sim\left\langle t_{1}^{d_{1}} t_{2}^{w} t_{3}^{n_{1}}, t_{2}^{d_{2}} t_{3}^{n_{2}}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle
$$

Note that the relation $t_{1}\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right) t_{1}^{-1}=\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right)\left(t_{3}^{\frac{n d_{1} d_{2}}{p}}\right)^{\left(-\frac{p m}{d_{1} d_{2}}\right)} \in N$ shows that $\frac{p m}{d_{1} d_{2}} \in \mathbb{Z}$. Therefore we have proved the lemma.

Remark. The condition $\frac{p m}{d_{1} d_{2}} \in \mathbb{Z}$ in the above lemma is crucial to determine the number of affinely non-conjugacy classes when d_{1}, d_{2} and p are given. In fact, for $\bar{d}=\left(d_{1}, d_{2}\right)$ and $p=k D$, where D is the least common multiple of d_{1} and d_{2}, we have $\frac{p m}{d_{1} d_{2}} \in \mathbb{Z}$ if and only if $\frac{k m}{d} \in \mathbb{Z}$. Let $q=(\bar{d}, k)$. Then $\frac{k m}{\bar{d}} \in \mathbb{Z}$ if and only if $\frac{k^{\prime} m}{d^{\prime}} \in \mathbb{Z}$, where $k=q k^{\prime}, \bar{d}=q \bar{d}^{\prime},\left(k^{\prime}, \bar{d}^{\prime}\right)=1$. Thus \bar{d}^{\prime} is a divisor of m. Since $0 \leq m<\bar{d}=q \bar{d}^{\prime}$, we can get

$$
m=0, \bar{d}^{\prime}, \cdots,(q-1) \bar{d}^{\prime}
$$

Theorem 2. Let N^{m} and $N^{m^{\prime}}$ be normal nilpotent subgroups of π and isomorphic to Γ_{p} whose sets of generators are

$$
N^{m}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle, \quad N^{m^{\prime}}=\left\langle t_{1}^{d_{1}} t_{2}^{m^{\prime}} t_{3}^{\ell^{\prime}}, t_{2}^{d_{2}} t_{3}^{r^{\prime}}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle
$$

If $m \neq m^{\prime}$, then N^{m} is not affinely conjugate to $N^{m^{\prime}}$.
Proof. Assume that N^{m} is affinely conjugate to $N^{m^{\prime}}$. Then there exists

$$
\mu=\left(\left[\begin{array}{lll}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{l}
u \\
v
\end{array}\right],\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)\right) \in N_{\mathrm{Aff}(\mathcal{H})}\left(\pi_{1}\right)
$$

satisfying either

$$
\begin{equation*}
\mu\left(t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2} m^{m^{\prime}} t_{3}^{\prime^{\prime}}, \quad \mu\left(t_{2}^{d_{2}} t_{3}^{r}\right) \mu^{-1}=t_{2}^{d_{2}} t_{3}^{r^{\prime}} \tag{*}
\end{equation*}
$$

or
(**) $\quad \mu\left(t_{1}{ }^{d_{1}} t_{2}{ }^{m} t_{3}^{\ell}\right) \mu^{-1}=t_{2}^{d_{2}} t_{3}{ }^{r^{\prime}}, \quad \mu\left(t_{2}^{d_{2}} t_{3}^{r}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}{ }^{m^{\prime}} t_{3}^{\ell^{\prime}}$.
From (*), we obtain that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ c & 1\end{array}\right]$, and $c d_{1}=m-m^{\prime} \neq 0$. Note that $0 \leq m, m^{\prime}<\bar{d}$ by Lemma 1. Since $d_{1} \leq|c| d_{1}=\left|m-m^{\prime}\right|<\bar{d} \leq d_{1}$, we have a contradiction. However in ($* *$), we obtain the following relations:

$$
b d_{2}=d_{1}, \quad d d_{2}=m^{\prime}, \quad a d_{1}+b m=0, \quad c d_{1}+d m=d_{2}
$$

The relation $d d_{2}=m^{\prime}<d_{2}$ induces $d=0, m^{\prime}=0$ and $b c=1$. Therefore the relation $|a| d_{1}=|-b m|=|m|<\bar{d} \leq d_{1}$ implies $m=0$, which is a contradiction.

Let $N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle$ be a normal nilpotent subgroup of π. The following theorem shows the conditions of affine conjugacy to N for given d_{1}, d_{2} and m.

Theorem 3. Let N and N^{\prime} be normal nilpotent subgroups of π whose sets of generators are

$$
N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle, \quad N^{\prime}=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell^{\prime}}, t_{2}^{d_{2}} t_{3}^{r^{\prime}}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle
$$

Then $N \sim N^{\prime}$ is equivalent to either

$$
r \equiv r^{\prime}\left(\bmod d_{2}\right), \quad \ell \equiv\left(\ell^{\prime}+\frac{m\left(r-r^{\prime}\right)}{d_{2}}\right) \quad\left(\bmod d_{1}\right),
$$

or $m=0, d_{1}=d_{2}$ and d_{1} is a divisor of $\ell+r^{\prime}$ and $r+\ell^{\prime}$.
Proof. Assume that N is affinely conjugate to N^{\prime}. Then there exists $\mu \in$ $N_{\text {Aff(}}(\mathcal{H})\left(\pi_{1}\right)$ satisfying either

$$
\begin{equation*}
\mu\left(t_{1}^{d_{1}} t_{2}{ }^{m} t_{3}^{\ell}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell^{\prime}}, \quad \mu\left(t_{2}^{d_{2}} t_{3}^{r}\right) \mu^{-1}=t_{2}^{d_{2}} t_{3}^{r^{\prime}}, \tag{*}
\end{equation*}
$$

or
(**) $\quad \mu\left(t_{1}{ }^{d_{1}} t_{2}{ }^{m} t_{3}^{\ell}\right) \mu^{-1}=t_{2}^{d_{2}} t_{3}{ }^{r^{\prime}}, \quad \mu\left(t_{2}^{d_{2}} t_{3}^{r}\right) \mu^{-1}=t_{1}^{d_{1}} t_{2}{ }^{m} t_{3}^{\prime^{\prime}}$.
From (*), we obtain the following relations:

$$
b d_{2}=0, \quad d d_{2}=d_{2}, \quad a d_{1}+b m=d_{1}, \quad c d_{1}+d m=m .
$$

Thus we obtain $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Using this, we can get

$$
x+u=\frac{r-r^{\prime}}{n d_{2}}, \quad y+v=-\frac{\ell-\ell^{\prime}}{n d_{1}}+\frac{m\left(r-r^{\prime}\right)}{n d_{1} d_{2}} .
$$

Since $x+u$ and $y+v$ are multiples of $\frac{1}{n}$, we have

$$
\frac{r-r^{\prime}}{d_{2}} \in \mathbb{Z} \text { and } \frac{\ell-\ell^{\prime}}{d_{1}}-\frac{m\left(r-r^{\prime}\right)}{d_{1} d_{2}} \in \mathbb{Z} .
$$

Therefore we can conclude that

$$
r \equiv r^{\prime}\left(\bmod d_{2}\right), \quad \ell \equiv\left(\ell^{\prime}+\frac{m\left(r-r^{\prime}\right)}{d_{2}}\right) \quad\left(\bmod d_{1}\right) .
$$

The converse is easy by using

$$
\left(\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \frac{\ell^{\prime}-\ell}{n d_{1}} \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
\frac{r-r^{\prime}}{n d_{2}} \\
\frac{m\left(r-r^{\prime}\right)}{n d_{1} d_{2}}
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right]\right)\right) \in N_{\mathrm{Aff}(\mathcal{H})}\left(\pi_{1}\right) .
$$

However in $(* *)$, we obtain the following relations:

$$
b d_{2}=d_{1}, \quad d d_{2}=m, \quad a d_{1}+b m=0, \quad c d_{1}+d m=d_{2}
$$

The relation $0 \leq d d_{2}=m<d_{2}$ induces $d=0$ and $m=0$. Thus we have

$$
a=0, \quad b=c=1, \quad d_{1}=d_{2}
$$

Using this, we can get $x+u=-\frac{\ell+r^{\prime}}{n d_{2}}, \quad y+v=\frac{r+\ell^{\prime}}{n d_{1}}$. Since $x+u$ and $y+v$ are multiples of $\frac{1}{n}$, we have

$$
\frac{\ell+r^{\prime}}{d_{2}} \in \mathbb{Z} \text { and } \frac{r+\ell^{\prime}}{d_{1}} \in \mathbb{Z}
$$

Therefore $d_{1}\left(=d_{2}\right)$ is a divisor of $\ell+r^{\prime}$ and $r+\ell^{\prime}$. The converse is easy by

$$
\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left(\left[\begin{array}{c}
-\frac{\ell+r^{\prime}}{n d_{1}} \\
\frac{r+\ell^{\prime}}{n d_{1}}
\end{array}\right],\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]\right)\right) \in N_{\operatorname{Aff}(\mathcal{H})}\left(\pi_{1}\right)
$$

According to the above Remark, Theorems 2 and 3, we obtain the following result, which corrects the error in [1, Theorem 3.11.].

Corollary 4. Let N be a normal nilpotent subgroup of π whose set of generators is

$$
N=\left\langle t_{1}^{d_{1}} t_{2}^{m} t_{3}^{\ell}, t_{2}^{d_{2}} t_{3}^{r}, t_{3}^{\frac{n d_{1} d_{2}}{p}}\right\rangle
$$

If $n \geqslant \frac{p}{\min \left\{d_{1}, d_{2}\right\}}$, then the number of affine conjugacy classes of normal nilpotent subgroups is

$$
\left\{\begin{array}{ll}
q d_{1} d_{2} & \text { if } d_{1} \neq d_{2}, \\
d_{1} d_{2}-\frac{d_{1}}{2}+1 & \text { if } d_{1}=d_{2}, m=0, \quad d_{1} \in 2 \mathbb{N} \\
d_{1} d_{2}-\frac{d_{1}-1}{2} & \text { if } d_{1}=d_{2}, m=0, \quad d_{1} \in 2 \mathbb{N}-1
\end{array}\right\}
$$

where $q=\left(\operatorname{gcd}\left(d_{1}, d_{2}\right), k\right), k$ can be obtained from $p=k D$ and D is the least common multiple of d_{1} and d_{2}.

Example. Assume $\mathbb{Z}_{2} \times \mathbb{Z}_{n}$ acts freely on the nilmanifold $\mathcal{N}_{2}=\mathcal{H} / \Gamma_{2}$ which yields an orbit manifold homeomorphic to \mathcal{H} / π. Then there exist 2 distinct affine conjugacy classes of free actions:

$$
N_{1}=\left\langle t_{1}^{2}, t_{2}, t_{3}^{n}\right\rangle, \quad N_{2}=\left\langle t_{1}^{2} t_{3}, t_{2}, t_{3}^{n}\right\rangle
$$

References

1. D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc. 42(4) (2005), 795-826.
2. H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl. 144 (2004), 255-270.
3. K. Dekimpe, P. Igodt, S. Kim and K. B. Lee, Affine structures for closed 3-dimensional manifolds with nil-geometry, Quarterly J. Math. Oxford (2) 46 (1995), 141-167.
4. K. Y. Ha, J. H. Jo, S. W. Kim and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl. 121(3) (2002), 469-507.
5. W. Heil, On P^{2}-irreducible 3-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775.
6. W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J. 20 (1973), 217-223.
7. J. Hempel, Free cyclic actions of $S^{1} \times S^{1} \times S^{1}$, Proc. Amer. Math. Soc. 48(1) (1975), 221-227.
8. K. B. Lee, J. K. Shin and Y. Shoji, Free actions of finite abelian groups on the 3-Torus, Topology Appl. 53 (1993), 153-175.
9. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 no. 2 (1968), 56-88.
10. S. Wolfram, Mathematica, Wolfram Research, 1993.

Department of Mathematics

Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: jkshin@cnu.ac.kr

[^0]: Received October 24, 2006
 2000 Mathematics Subject Classifications: Primary 59S25, 57M05.
 Key words and phrases: group actions, Heisenberg group, almost Bieberbach groups, Affine conjugacy.

