• 제목/요약/키워드: Hardy

검색결과 405건 처리시간 0.027초

A NOTE ON THE WEIGHTED q-HARDY-LITTLEWOOD-TYPE MAXIMAL OPERATOR WITH RESPECT TO q-VOLKENBORN INTEGRAL IN THE p-ADIC INTEGER RING

  • Araci, Serkan;Acikgoz, Mehmet
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.365-372
    • /
    • 2013
  • The essential aim of this paper is to define weighted $q$-Hardylittlewood-type maximal operator by means of $p$-adic $q$-invariant distribution on $\mathbb{Z}_p$. Moreover, we give some interesting properties concerning this type maximal operator.

SPECIAL ORTHONORMAL BASIS FOR L2 FUNCTIONS ON THE UNIT CIRCLE

  • Chung, Young-Bok
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.2013-2027
    • /
    • 2017
  • We compute explicitly the matrices represented by Toeplitz operators on the Hardy space over the unit circle with respect to a special orthonormal basis constructed by author in terms of their symbols. And we also find a necessary condition for the matrix generated by the product of two Toeplitz operators with respect to the basis to be a Toeplitz matrix by a direct calculation and we finally solve commuting problems of two Toeplitz operators in terms of symbols. This is a generalization of the classical results obtained regarding to the orthonormal basis consisting of the monomials.

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

QUASI-INNER FUNCTIONS OF A GENERALIZED BEURLING'S THEOREM

  • Kim, Yun-Su
    • 대한수학회보
    • /
    • 제46권6호
    • /
    • pp.1229-1236
    • /
    • 2009
  • We introduce two kinds of quasi-inner functions. Since every rationally invariant subspace for a shift operator S$_K$ on a vector-valued Hardy space H$^2$(${\Omega}$, K) is generated by a quasi-inner function, we also provide relationships of quasi-inner functions by comparing rationally invariant subspaces generated by them. Furthermore, we discuss fundamental properties of quasi-inner functions and quasi-inner divisors.

ORTHONORMAL BASIS FOR THE BERGMAN SPACE

  • Chung, Young-Bok;Na, Heui-Geong
    • 호남수학학술지
    • /
    • 제36권4호
    • /
    • pp.777-786
    • /
    • 2014
  • We construct an orthonormal basis for the Bergman space associated to a simply connected domain. We use the or-thonormal basis for the Hardy space consisting of the Szegő kernel and the Riemann mapping function and rewrite their area integrals in terms of arc length integrals using the complex Green's identity. And we make a note about the matrix of a Toeplitz operator with respect to the orthonormal basis constructed in the paper.

WEIGHTED LEBESGUE NORM INEQUALITIES FOR CERTAIN CLASSES OF OPERATORS

  • Song, Hi Ja
    • Korean Journal of Mathematics
    • /
    • 제14권2호
    • /
    • pp.137-160
    • /
    • 2006
  • We describe the weight functions for which Hardy's inequality of nonincreasing functions is satisfied. Further we characterize the pairs of weight functions $(w,v)$ for which the Laplace transform $\mathcal{L}f(x)={\int}^{\infty}_0e^{-xy}f(y)dy$, with monotone function $f$, is bounded from the weighted Lebesgue space $L^p(w)$ to $L^q(v)$.

  • PDF