KYUNGPOOK Math. J. 49(2009), 623-630

On the Hilbert Type Integral Inequalities with Some Parameters and Its Reverse

HÜSEYIN YILDIRIM^{*}, UMUT MUTLU ÖZKAN AND MEHMET ZEKI SARIKAYA Department of Mathematics, Faculty of Science and Arts, Kocatepe University, Afyon-Turkey

 $e\text{-}mail: \texttt{hyildir@aku.edu.tr, umut_ozkan@aku.edu.tr} and \texttt{sarikaya@aku.edu.tr} and \texttt{sarikaya@ak$

ABSTRACT. This paper deals with some new generalizations of the Hardy-Hilbert type integral inequalities with some parameters. We also consider the equivalent inequalities and the reverse forms.

1. Introduction

If
$$f(x)$$
, $g(x) \ge 0$, such that $0 < \int_{0}^{\infty} f^{2}(x) dx < \infty$ and $0 < \int_{0}^{\infty} g^{2}(x) dx < \infty$ then

(1.1)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{x+y} dx dy < \pi \left(\int_{0}^{\infty} f^2(x) dx \int_{0}^{\infty} g^2(x) dx \right)^{\frac{1}{2}},$$

where the constant factor π is the best possible (see [1]). Inequality (1.1) had been extended by Hardy-Riesz as:

If p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, f(x), $g(x) \ge 0$, such that $0 < \int_{0}^{\infty} f^{p}(x) dx < \infty$ and

 $0 < \int_{0}^{\infty} g^{q}(x) dx < \infty$, then we have the following Hardy-Hilbert's integral inequality:

(1.2)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{x+y} dx dy < \frac{\pi}{\sin(\frac{\pi}{p})} \left(\int_{0}^{\infty} f^{p}(x) dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} g^{q}(x) dx \right)^{\frac{1}{q}},$$

where the constant factor $\frac{\pi}{\sin(\frac{\pi}{p})}$ is the best possible constant (see [2]). This inequality play an important role in mathematical analysis and its applications (see [3]). In [4] and [5], Yang gave some new generalizations of (1.2) by introducing a parameter $\lambda > 0$, and Yang et al. [6] gave an extension of the above results by introducing the index of conjugate parameter (r, s) $(r > 1, \frac{1}{r} + \frac{1}{s} = 1)$ as follows:

Key words and phrases: Hardy-Hilbert type integral inequalities, weighted function, Hölder inequality.

^{*} Corresponding author.

Received May 5, 2008; accepted September 3, 2008.

²⁰⁰⁰ Mathematics Subject Classification: $26\mathrm{D}10,\,11\mathrm{B}39.$

Hüseyin Yildirim, Umut Mutlu Özkan and Mehmet Zeki Sarikaya

$$\text{If } f(x), \, g(x) \ge 0 \text{ and } 0 < \int_{0}^{\infty} x^{p(1-\frac{\lambda}{r})-1} f^p(x) dx < \infty, \, 0 < \int_{0}^{\infty} x^{q(1-\frac{\lambda}{s})-1} g^q(x) dx < 0 \text{ for } x^{p(1-\frac{\lambda}{s})-1} g^q(x) dx < 0 \text{ for } x^{p(1-\frac{\lambda}{s}$$

 ∞ , then (1.3)

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{\lambda}} dx dy \quad < \quad B(\frac{\lambda}{r}, \frac{\lambda}{s}) \left(\int_{0}^{\infty} x^{p(1-\frac{\lambda}{r})-1} f^{p}(x) dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} x^{q(1-\frac{\lambda}{s})-1} g^{q}(x) dx \right)^{\frac{1}{q}},$$

where the constant factor $B(\frac{\lambda}{r}, \frac{\lambda}{s})$ is the best possible constant. In particular, for $\lambda = 1, r = p$, inequality (1.3) reduces to (1.2); for $\lambda = 4, r = s = 2$, inequality (1.3) reduces to:

(1.4)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(x+y)^{4}} dx dy < \frac{1}{6} \left(\int_{0}^{\infty} \frac{1}{x^{p+1}} f^{p}(x) dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \frac{1}{x^{q+1}} g^{q}(x) dx \right)^{\frac{1}{q}}.$$

Recently, Xie et al.[8] gave a new Hilbert type integral inequality with some parameters and its reverse as follows:

If p > 1, $\frac{1}{p} + \frac{1}{q} = 1$, a, b > 0, $a \neq b$, $f(x), g(x) \ge 0$, such that $0 < \int_{0}^{\infty} \frac{1}{x^{p+1}} f^{p}(x) dx < \infty$ and $0 < \int_{0}^{\infty} \frac{1}{x^{q+1}} g^{q}(x) dx < \infty$, then (1.5) $\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(x+ay)^{2}(x+by)^{2}} dx dy < K \left(\int_{0}^{\infty} \frac{1}{x^{p+1}} f^{p}(x) dx\right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \frac{1}{x^{q+1}} g^{q}(x) dx\right)^{\frac{1}{q}}$,

where the constant factor $K = \frac{a+b}{(b-a)^2} \left[\frac{1}{b-a} \ln(\frac{b}{a}) - \frac{2}{a+b} \right]$ is the best possible constant. If 0 , then (1.6)

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(x+ay)^{2} (x+by)^{2}} dx dy > K \left(\int_{0}^{\infty} \frac{1}{x^{p+1}} f^{p}(x) dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \frac{1}{x^{q+1}} g^{q}(x) dx \right)^{\frac{1}{q}},$$

where K the constant factor is the best possible.

In this paper, by introducing some parameters and estimating the weight function, we prove Hilbert type integral inequality with a best constant factor similar to (1.4) and (1.5). The equivalent inequalities and the reverse forms are considered.

2. Main Results

In order to obtain our results, we need the following lemmas.

Lemma 2.1. If a, b > 0, $a \neq b$, $\alpha > 0$, the weight function $\overline{\omega}(x)$ and $\omega(y)$ defined by

(2.1)
$$\bar{\omega}(x) = \int_{0}^{\infty} \frac{x^{2\alpha}y^{2\alpha-1}}{\left(x^{\alpha} + ay^{\alpha}\right)^{2} \left(x^{\alpha} + by^{\alpha}\right)^{2}} dy, \ x \in (0, \infty),$$

624

On the Hilbert Type Integral Inequalities with Some Parameters and Its Reverse 625

(2.2)
$$\omega(y) = \int_{0}^{\infty} \frac{x^{2\alpha-1}y^{2\alpha}}{\left(x^{\alpha}+ay^{\alpha}\right)^{2}\left(x^{\alpha}+by^{\alpha}\right)^{2}} dx, \ y \in (0,\infty),$$

 $then \ we \ have$

(2.3)
$$\bar{\omega}(x) = \omega(y) = K := \frac{1}{\alpha} \frac{a+b}{(b-a)^2} \left[\frac{1}{b-a} \ln(\frac{b}{a}) - \frac{2}{a+b} \right].$$

Proof. For fixed x, setting $u = \frac{y^{\alpha}}{x^{\alpha}}$ in (2.1), we obtain

$$\bar{\omega}(x) = \frac{1}{\alpha} \int_{0}^{\infty} \frac{u}{(1+au)^{2} (1+bu)^{2}} du = \frac{1}{\alpha} \frac{a+b}{(b-a)^{2}} \left[\frac{1}{b-a} \ln(\frac{b}{a}) - \frac{2}{a+b} \right].$$

Hence we obtain $\bar{\omega}(x) = K$. In the same way, we obtain $\omega(y) = K$.

Xie proved the following lemma in [8, Lemma 2.2].

Lemma 2.2. If a, b > 0, $a \neq b$ and $\alpha > 0$ for $0 < \varepsilon < p$, we have

(2.4)
$$\int_{0}^{\infty} \frac{u^{1-\frac{\varepsilon}{p}}}{(1+au)^{2} (1+bu)^{2}} du = K+o(1), \quad \varepsilon \to 0^{+}.$$

Lemma 2.3. If p > 1 (or $0), <math>\frac{1}{p} + \frac{1}{q} = 1$, a, b > 0, $a \neq b$, $\alpha > 0$ and $0 < \varepsilon < p$, setting

$$I := \int_{1}^{\infty} \left[\int_{1}^{\infty} \frac{y^{\alpha(2-\frac{\varepsilon}{p})-1} dy}{\left(x^{\alpha}+ay^{\alpha}\right)^{2} \left(x^{\alpha}+by^{\alpha}\right)^{2}} \right] x^{\alpha(2-\frac{\varepsilon}{q})-1} dx$$

 $then \ we \ have$

(2.5)
$$\frac{1}{\alpha\varepsilon}(K+o(1)) - O(1) \leq I \leq \frac{1}{\alpha\varepsilon}(K+o(1)), \quad \varepsilon \to 0^+.$$

Proof. For fixed x, $(1 + au)^2(1 + bu)^2 > (a + b)u$, setting $y^{\alpha} = x^{\alpha}u$, then we obtain the following inequality by (2.4).

$$\begin{split} I &= \int_{1}^{\infty} x^{-\alpha\varepsilon-1} \left[\int_{x^{-\alpha}}^{\infty} \frac{u^{1-\frac{\varepsilon}{p}} du}{(1+au)^2(1+bu)^2} \right] dx \\ &= \int_{1}^{\infty} x^{-\alpha\varepsilon-1} \left[\int_{0}^{\infty} \frac{u^{1-\frac{\varepsilon}{p}} du}{(1+au)^2(1+bu)^2} \right] dx \\ &- \int_{1}^{\infty} x^{-\alpha\varepsilon-1} \left[\int_{0}^{x^{-\alpha}} \frac{u^{1-\frac{\varepsilon}{p}} du}{(1+au)^2(1+bu)^2} \right] dx \\ &\geq \frac{1}{\alpha\varepsilon} \left(K + o(1) \right) - \frac{1}{a+b} \int_{1}^{\infty} x^{-1} \left(\int_{0}^{x^{-\alpha}} u^{-\frac{\varepsilon}{p}} du \right) dx \\ &= \frac{1}{\alpha\varepsilon} \left(K + o(1) \right) - \frac{1}{\alpha(a+b)} \frac{1}{(1-\frac{\varepsilon}{p})^2} \\ &= \frac{1}{\alpha\varepsilon} \left(K + o(1) \right) - O(1). \end{split}$$

By the same way, we have

$$I \leq \int_{1}^{\infty} \left[\int_{0}^{\infty} \frac{y^{\alpha(2-\frac{\varepsilon}{p})-1} dy}{\left(x^{\alpha}+ay^{\alpha}\right)^{2} \left(x^{\alpha}+by^{\alpha}\right)^{2}} \right] x^{\alpha(2-\frac{\varepsilon}{q})-1} dx = \frac{1}{\alpha\varepsilon} \left(K+o(1)\right).$$

$$\begin{aligned} \text{Theorem 2.1. If } p > 1, \ \frac{1}{p} + \frac{1}{q} &= 1, \ a, b > 0, \ a \neq b, \ \alpha > 0 \ and \ f(x), \ g(x) \ge 0, \ such \\ that \ 0 < \int_{0}^{\infty} \frac{1}{x^{p(2\alpha-1)+1}} f^{p}(x) dx < \infty \ and \ 0 < \int_{0}^{\infty} \frac{1}{x^{q(2\alpha-1)+1}} g^{q}(x) dx < \infty, \ then \\ \end{aligned}$$

$$\begin{aligned} \text{(2.6)} \\ \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(x^{\alpha} + ay^{\alpha})^{2} (x^{\alpha} + by^{\alpha})^{2}} dx dy \ < \ K \left(\int_{0}^{\infty} \frac{1}{x^{p(2\alpha-1)+1}} f^{p}(x) dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \frac{1}{x^{q(2\alpha-1)+1}} g^{q}(x) dx \right)^{\frac{1}{q}} \end{aligned}$$

where the constant factor K is the best possible and K is defined by (2.3). *Proof.* By Hölder's inequality, with weight (see [7]) and (2.1)-(2.3), we have

$$J := \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(x^{\alpha} + ay^{\alpha})^{2}(x^{\alpha} + by^{\alpha})^{2}} dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{(x^{\alpha} + ay^{\alpha})^{2}(x^{\alpha} + by^{\alpha})^{2}} \left[\frac{y^{\frac{2\alpha-1}{p}}}{x^{\frac{2\alpha-1}{q}}}f(x)\right] \left[\frac{x^{\frac{2\alpha-1}{q}}}{y^{\frac{2\alpha-1}{p}}}g(y)\right] dx dy$$

$$\leq \left\{ \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{(x^{\alpha} + ay^{\alpha})^{2}(x^{\alpha} + by^{\alpha})^{2}} \left(\frac{y^{2\alpha-1}}{x^{(p-1)(2\alpha-1)}}\right) f^{p}(x) dy dx \right\}^{\frac{1}{p}}$$

$$\times \left\{ \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{(x^{\alpha} + ay^{\alpha})^{2}(x^{\alpha} + by^{\alpha})^{2}} \left(\frac{x^{2\alpha-1}}{y^{(q-1)(2\alpha-1)}}\right) g^{q}(y) dx dy \right\}^{\frac{1}{q}}$$

$$= \left\{ \int_{0}^{\infty} \overline{\omega}(x) \frac{1}{x^{p(2\alpha-1)+1}} f^{p}(x) dx \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} \omega(y) \frac{1}{y^{q(2\alpha-1)+1}} g^{q}(y) dy \right\}^{\frac{1}{q}}$$

$$= K \left\{ \int_{0}^{\infty} \frac{1}{x^{p(2\alpha-1)+1}} f^{p}(x) dx \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} \frac{1}{x^{q(2\alpha-1)+1}} g^{q}(x) dx \right\}^{\frac{1}{q}}.$$

If (2.7) takes the form of equality, then the exists constants M and N, such that they are not all zero, and (see [7])

$$M(\frac{y}{x^{p(2\alpha-1)-1}})f^p(x) = N(\frac{x}{y^{q(2\alpha-1)-1}})g^q(y)$$

a.e. in $(0,\infty) \times (0,\infty)$. Hence, there exists a constant C, such that

$$Mx^{-p(2\alpha-1)}f^{p}(x) = Ny^{-q(2\alpha-1)}g^{q}(y) = C$$

a.e. in $(0,\infty)$. We claim that M = 0. In fact, if $M \neq 0$, then $x^{-p(2\alpha-1)-1}f^p(x) = \frac{C}{Mx}$ a.e. in $(0,\infty)$, which contradicts the fact that $0 < \int_{0}^{\infty} x^{-p(2\alpha-1)-1}f^p(x)dx < \infty$.

626

In the same way, we claim that N = 0. This is a contradiction. Hence by (2.7), we have (2.6).

If the constant factor K in (2.6) is not the best possible, then there exists a positive constant H (with H < K), such that (2.6) is still valid if we replace K by H. For $0 < \varepsilon < p$ small enough, setting f_{ε} and g_{ε} as: $f_{\varepsilon}(x) = g_{\varepsilon}(x) = 0$, for $x \in (0,1)$; $f_{\varepsilon}(x) = x^{\alpha(2-\frac{\varepsilon}{p})-1}$; $g_{\varepsilon}(x) = x^{\alpha(2-\frac{\varepsilon}{p})-1}$, for $x \in [1,\infty)$, then we have

$$H\left\{\int_{0}^{\infty} \frac{1}{x^{p(2\alpha-1)+1}} f_{\varepsilon}^{p}(x) dx\right\}^{\frac{1}{p}} \left\{\int_{0}^{\infty} \frac{1}{x^{q(2\alpha-1)+1}} g_{\varepsilon}^{q}(x) dx\right\}^{\frac{1}{q}}$$
$$= H\left\{\int_{1}^{\infty} x^{-\alpha\varepsilon-1} dx\right\}^{\frac{1}{p}} \left\{\int_{1}^{\infty} x^{-\alpha\varepsilon-1} dx\right\}^{\frac{1}{q}} = H\frac{1}{\alpha\varepsilon}.$$

By (2.5), we have

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f_{\varepsilon}(x)g_{\varepsilon}(y)}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} dxdy = \int_{1}^{\infty} \left[\int_{1}^{\infty} \frac{y^{\alpha(2-\frac{\varepsilon}{p})-1}dy}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} \right] x^{\alpha(2-\frac{\varepsilon}{q})-1} dx$$
$$\geq \quad \frac{1}{\alpha\varepsilon} \left(K + o(1) \right) - O(1).$$

Hence, we find

$$\frac{1}{\alpha\varepsilon} \left(K + o(1) \right) - O(1) < \frac{H}{\alpha\varepsilon} \quad \text{or} \quad \left(K + o(1) \right) - \alpha\varepsilon O(1) < H$$

For $\varepsilon \to 0^+$, it follows that $K \leq H$. This contradicts the fact that H < K. Hence the constant factor K in (2.6) is the best possible.

Theorem 2.2. If $0 , <math>\frac{1}{p} + \frac{1}{q} = 1$, a, b > 0, $a \neq b$, $\alpha > 0$ and f(x), $g(x) \ge 0$, such that $0 < \int_{0}^{\infty} \frac{1}{x^{p(2\alpha-1)+1}} f^{p}(x) dx < \infty$ and $0 < \int_{0}^{\infty} \frac{1}{x^{q(2\alpha-1)+1}} g^{q}(x) dx < \infty$, then

(2.8)
$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(x^{\alpha} + ay^{\alpha})^{2} (x^{\alpha} + by^{\alpha})^{2}} dx dy \\ > K \left(\int_{0}^{\infty} \frac{1}{x^{p(2\alpha-1)+1}} f^{p}(x) dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \frac{1}{x^{q(2\alpha-1)+1}} g^{q}(x) dx \right)^{\frac{1}{q}},$$

where the constant factor K is the best possible and K is defined by (2.3).

Proof. By the reverse Hölder's inequality with weight (see [7]) and the same way of giving (2.7), we obtain (2.8).

If the constant factor K in (2.8) is not the best possible, then there exists a positive constant H (with H > K), such that (2.8) is still valid if we replace K by H. For $0 < \varepsilon < p$ small enough, setting f_{ε} and g_{ε} as: $f_{\varepsilon}(x) = g_{\varepsilon}(x) = 0$, for

$$\begin{aligned} x \in (0,1); \, f_{\varepsilon}(x) &= x^{\alpha(2-\frac{\varepsilon}{p})-1}; \, g_{\varepsilon}(x) = x^{\alpha(2-\frac{\varepsilon}{q})-1}, \, \text{for } x \in [1,\infty), \, \text{then we have} \\ H\left\{\int_{0}^{\infty} \frac{1}{x^{p(2\alpha-1)+1}} f_{\varepsilon}^{p}(x) dx\right\}^{\frac{1}{p}} \left\{\int_{0}^{\infty} \frac{1}{x^{q(2\alpha-1)+1}} g_{\varepsilon}^{q}(x) dx\right\}^{\frac{1}{q}} \\ &= H\left\{\int_{1}^{\infty} x^{-\alpha\varepsilon-1} dx\right\}^{\frac{1}{p}} \left\{\int_{1}^{\infty} x^{-\alpha\varepsilon-1} dx\right\}^{\frac{1}{q}} = H\frac{1}{\alpha\varepsilon}.\end{aligned}$$

By (2.5), we have

$$\int_{0}^{\infty} \int_{0}^{\infty} \frac{f_{\varepsilon}(x)g_{\varepsilon}(y)}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} dx dy = \int_{1}^{\infty} \left[\int_{0}^{\infty} \frac{y^{\alpha(2-\frac{\varepsilon}{p})-1}dy}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} \right] x^{\alpha(2-\frac{\varepsilon}{q})-1} dx$$

$$\leq \quad \frac{1}{\alpha\varepsilon} \left(K + o(1) \right).$$

Hence, we find

(2.11)

$$\frac{1}{\alpha\varepsilon} \left(K + o(1) \right) > \frac{H}{\alpha\varepsilon} \quad \text{or} \quad \left(K + o(1) \right) > H.$$

For $\varepsilon \to 0^+$, it follows that $K \ge H$. This contradicts the fact that H > K. Hence the constant factor K in (2.8) is the best possible.

Theorem 2.3. Under the same assumption of Theorem 2.1 we have

(2.9)
$$\int_{0}^{\infty} y^{2\alpha p-1} \left(\int_{0}^{\infty} \frac{f(x)}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} dx \right)^{p} dy < K^{p} \int_{0}^{\infty} \frac{f^{p}(x)}{x^{p(2\alpha-1)+1}} dx$$

where the constant factor K^p is the best possible. Inequalities (2.9) and (2.6) are equivalent.

$$Proof. \text{ Setting } g(y) = y^{2\alpha p - 1} \left(\int_{0}^{\infty} \frac{f(x)}{(x^{\alpha} + ay^{\alpha})^{2} (x^{\alpha} + by^{\alpha})^{2}} dx \right)^{p - 1}, \text{ by (2.6), we have}$$
$$\int_{0}^{\infty} y^{-q(2\alpha - 1) - 1} g^{q}(y) dy = \int_{0}^{\infty} y^{2\alpha p - 1} \left(\int_{0}^{\infty} \frac{f(x)}{(x^{\alpha} + ay^{\alpha})^{2} (x^{\alpha} + by^{\alpha})^{2}} dx \right)^{p} dy$$
$$(2.10) = \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x)g(y)}{(x^{\alpha} + ay^{\alpha})^{2} (x^{\alpha} + by^{\alpha})^{2}} dx dy$$
$$\leq K \left(\int_{0}^{\infty} \frac{f^{p}(x)}{x^{p(2\alpha - 1) + 1}} dx \right)^{\frac{1}{p}} \left(\int_{0}^{\infty} \frac{g^{q}(y)}{y^{q(2\alpha - 1) + 1}} dy \right)^{\frac{1}{q}}$$
$$(2.11) = 0 < \int_{0}^{\infty} y^{-q(2\alpha - 1) - 1} g^{q}(y) dy \le K^{p} \int_{0}^{\infty} \frac{f^{p}(x)}{x^{p(2\alpha - 1) + 1}} dx < \infty.$$

628

Hence by (2.6), (2.10) and (2.11) preserve the form of strict inequalities, and we have (2.9). By Hölder's inequality, we have (2.12)

$$\int_{0}^{\infty} y^{2\alpha p-1} \left(\int_{0}^{\infty} \frac{f(x)}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} dx \right)^{p} dy$$

$$= \int_{0}^{\infty} y^{(2\alpha-1)+\frac{1}{q}} \left(\int_{0}^{\infty} \frac{f(x)}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} dx \right) y^{-(2\alpha-1)-\frac{1}{q}} g(y) dy$$

$$= \left\{ \int_{0}^{\infty} y^{p(2\alpha-1)+\frac{p}{q}} \left(\int_{0}^{\infty} \frac{f(x)}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} dx \right)^{p} dy \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} y^{-q(2\alpha-1)-1} g^{q}(y) dy \right\}^{\frac{1}{q}}$$

$$= \left\{ \int_{0}^{\infty} y^{2\alpha p-1} \left(\int_{0}^{\infty} \frac{f(x)}{(x^{\alpha}+ay^{\alpha})^{2}(x^{\alpha}+by^{\alpha})^{2}} dx \right)^{p} dy \right\}^{\frac{1}{p}} \left\{ \int_{0}^{\infty} y^{-q(2\alpha-1)-1} g^{q}(y) dy \right\}^{\frac{1}{q}}.$$

Then by (2.9), we have (2.6). Hence inequalities (2.6) and (2.9) are equivalent.

If the constant factor in (2.9) is not the best possible, then by (2.12), we can get a contradiction that the constant factor in (2.6) is not the best possible. \Box

Theorem 2.4. Under the same assumption of Theorem 2.2 we have

(2.13)
$$\int_{0}^{\infty} y^{2\alpha p-1} \left(\int_{0}^{\infty} \frac{f(x)}{(x^{\alpha} + ay^{\alpha})^{2} (x^{\alpha} + by^{\alpha})^{2}} dx \right)^{p} dy > K^{p} \int_{0}^{\infty} \frac{f^{p}(x)}{x^{p(2\alpha-1)+1}} dx,$$

where the constant factor K^p is the best possible. Inequalities (2.13) and (2.8) are equivalent.

Proof. The proof of Theorem 2.3 is the similar.

References

- G. H. Hardy, J. E. Littlewood and G. Pólya, *Inequalities*, Cambridge University Press, Cambridge, 1952.
- [2] G. H. Hardy, Note on the theorem of Hilbert concerning series of positive terms, Proceeding London Math. Soc., Record of Proc. XLV-XLIV, 23(2), 1925.
- [3] D. S. Mintrinović, J. E. Pečarić and A. M. Fink, *Inequalities involving functions and their integrals and derivatives*, Kluwer Academic Publishers, Boston, 1991.
- [4] B. Yang, On Hardy-Hilbert's integral inequality, J. Math. Anal. Appl., 261(2001), 295-306.
- [5] B. Yang, On the extended Hilbert's integral inequality, J. Inequalities in Pure and Appl. Math., 5(4)(2004), Article 96.

- [6] B. Yang, I Bnaetić, M. Krnic and J. E. Pečarić, Generalization of Hilbert and Hardy-Hilbert integral inequalities, Math. Inequal. Appl., 8(2)(2005), 259-272.
- [7] J. Kang, Applied inequalities, Shangdong Science and Technology Press, Jinan, 2004.
- [8] Z. Xie and B. Yang, A new Hilbert-type integral inequality with Parameters and its reverse, Kyungpook Math. J., 48(2008), 93-100.