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Abstract. This paper deals with some new generalizations of the Hardy-Hilbert type

integral inequalities with some parameters. We also consider the equivalent inequalities

and the reverse forms.

1. Introduction

If f(x), g(x) ≥ 0, such that 0 <
∞∫
0

f2(x)dx < ∞ and 0 <
∞∫
0

g2(x)dx < ∞ then

(1.1)
∞∫
0

∞∫
0

f(x)g(y)

x+ y
dxdy < π

(∞∫
0

f2(x)dx
∞∫
0

g2(x)dx

) 1
2

,

where the constant factor π is the best possible (see [1]). Inequality (1.1) had been
extended by Hardy-Riesz as:

If p > 1, 1
p + 1

q = 1, f(x), g(x) ≥ 0, such that 0 <
∞∫
0

fp(x)dx < ∞ and

0 <
∞∫
0

gq(x)dx < ∞, then we have the following Hardy-Hilbert’s integral inequality:

(1.2)
∞∫
0

∞∫
0

f(x)g(y)

x+ y
dxdy < π

sin(π
p )

(∞∫
0

fp(x)dx

) 1
p
(∞∫

0

gq(x)dx

) 1
q

,

where the constant factor π
sin(π

p ) is the best possible constant (see [2]). This in-

equality play an important role in mathematical analysis and its applications (see
[3]). In [4] and [5], Yang gave some new generalizations of (1.2) by introducing a
parameter λ > 0, and Yang et al. [6] gave an extension of the above results by
introducing the index of conjugate parameter (r, s) (r > 1, 1

r + 1
s = 1) as follows:
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If f(x), g(x) ≥ 0 and 0 <
∞∫
0

xp(1−λ
r )−1fp(x)dx < ∞, 0 <

∞∫
0

xq(1−λ
s )−1gq(x)dx <

∞, then
(1.3)
∞∫
0

∞∫
0

f(x)g(y)

(x+ y)
λ
dxdy < B(λr ,

λ
s )

(∞∫
0

xp(1−λ
r )−1fp(x)dx

) 1
p
(∞∫

0

xq(1−λ
s )−1gq(x)dx

) 1
q

,

where the constant factor B(λr ,
λ
s ) is the best possible constant. In particular, for

λ = 1, r = p, inequality (1.3) reduces to (1.2); for λ = 4, r = s = 2, inequality (1.3)
reduces to:

(1.4)
∞∫
0

∞∫
0

f(x)g(y)

(x+ y)
4 dxdy < 1

6

(∞∫
0

1
xp+1 f

p(x)dx

) 1
p
(∞∫

0

1
xq+1 g

q(x)dx

) 1
q

.

Recently, Xie et al.[8] gave a new Hilbert type integral inequality with some param-
eters and its reverse as follows:

If p > 1, 1
p + 1

q = 1, a, b > 0, a ̸= b, f(x), g(x) ≥ 0, such that

0 <
∞∫
0

1
xp+1 f

p(x)dx < ∞ and 0 <
∞∫
0

1
xq+1 g

q(x)dx < ∞, then

(1.5)
∞∫
0

∞∫
0

f(x)g(y)

(x+ ay)
2
(x+ by)

2 dxdy < K

(∞∫
0

1
xp+1 f

p(x)dx

) 1
p
(∞∫

0

1
xq+1 g

q(x)dx

) 1
q

,

where the constant factor K = a+b
(b−a)2

[
1

b−a ln( ba )−
2

a+b

]
is the best possible con-

stant. If 0 < p < 1, then
(1.6)

∞∫
0

∞∫
0

f(x)g(y)

(x+ ay)
2
(x+ by)

2 dxdy > K

(∞∫
0

1
xp+1 f

p(x)dx

) 1
p
(∞∫

0

1
xq+1 g

q(x)dx

) 1
q

,

where K the constant factor is the best possible.

In this paper, by introducing some parameters and estimating the weight func-
tion, we prove Hilbert type integral inequality with a best constant factor similar to
(1.4) and (1.5). The equivalent inequalities and the reverse forms are considered.

2. Main Results

In order to obtain our results, we need the following lemmas.

Lemma 2.1. If a, b > 0, a ̸= b, α > 0, the weight function ω̄(x) and ω(y) defined
by

(2.1) ω̄(x) =
∞∫
0

x2αy2α−1

(xα + ayα)
2
(xα + byα)

2 dy, x ∈ (0,∞),
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(2.2) ω(y) =
∞∫
0

x2α−1y2α

(xα + ayα)
2
(xα + byα)

2 dx, y ∈ (0,∞),

then we have

(2.3) ω̄(x) = ω(y) = K := 1
α

a+b
(b−a)2

[
1

b−a ln( ba )−
2

a+b

]
.

Proof. For fixed x, setting u = yα

xα in (2.1), we obtain

ω̄(x) = 1
α

∞∫
0

u

(1 + au)
2
(1 + bu)

2 du

= 1
α

a+b
(b−a)2

[
1

b−a ln( ba )−
2

a+b

]
.

Hence we obtain ω̄(x) = K. In the same way, we obtain ω(y) = K. �
Xie proved the following lemma in [8, Lemma 2.2].

Lemma 2.2. If a, b > 0, a ̸= b and α > 0 for 0 < ε < p, we have

(2.4)
∞∫
0

u1− ε
p

(1 + au)
2
(1 + bu)

2 du = K + o(1), ε → 0+.

Lemma 2.3. If p > 1 (or 0 < p < 1), 1
p + 1

q = 1, a, b > 0, a ̸= b, α > 0 and
0 < ε < p, setting

I :=
∞∫
1

[
∞∫
1

yα(2−
ε
p )−1dy

(xα + ayα)
2
(xα + byα)

2

]
xα(2− ε

q )−1dx

then we have

(2.5) 1
αε (K + o(1))−O(1) ≤ I ≤ 1

αε (K + o(1)), ε → 0+.

Proof. For fixed x, (1 + au)2(1 + bu)2 > (a+ b)u, setting yα = xαu, then we obtain
the following inequality by (2.4).

I =
∞∫
1

x−αε−1

[
∞∫

x−α

u1− ε
p du

(1 + au)2(1 + bu)2

]
dx

=
∞∫
1

x−αε−1

[
∞∫
0

u1− ε
p du

(1 + au)2(1 + bu)2

]
dx

−
∞∫
1

x−αε−1

[
x−α∫
0

u1− ε
p du

(1 + au)2(1 + bu)2

]
dx

≥ 1
αε (K + o(1))− 1

a+b

∞∫
1

x−1

(
x−α∫
0

u− ε
p du

)
dx

= 1
αε (K + o(1))− 1

α(a+b)
1

(1− ε
p )

2

= 1
αε (K + o(1))−O(1).
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By the same way, we have

I ≤
∞∫
1

[
∞∫
0

yα(2−
ε
p )−1dy

(xα + ayα)
2
(xα + byα)

2

]
xα(2− ε

q )−1dx = 1
αε (K + o(1)) .

�

Theorem 2.1. If p > 1, 1
p +

1
q = 1, a, b > 0, a ̸= b, α > 0 and f(x), g(x) ≥ 0, such

that 0 <
∞∫
0

1
xp(2α−1)+1 f

p(x)dx < ∞ and 0 <
∞∫
0

1
xq(2α−1)+1 g

q(x)dx < ∞, then

(2.6)
∞∫
0

∞∫
0

f(x)g(y)

(xα + ayα)
2
(xα + byα)

2 dxdy < K

(∞∫
0

1
xp(2α−1)+1 f

p(x)dx

) 1
p
(∞∫

0

1
xq(2α−1)+1 g

q(x)dx

) 1
q

,

where the constant factor K is the best possible and K is defined by (2.3).

Proof. By Hölder’s inequality, with weight (see [7]) and (2.1)-(2.3), we have

(2.7)

J :=
∞∫
0

∞∫
0

f(x)g(y)

(xα + ayα)
2
(xα + byα)

2 dxdy

=
∞∫
0

∞∫
0

1

(xα + ayα)
2
(xα + byα)

2

[
y

2α−1
p

x
2α−1

q

f(x)

] [
x

2α−1
q

y
2α−1

p

g(y)

]
dxdy

≤

{
∞∫
0

∞∫
0

1

(xα + ayα)
2
(xα + byα)

2

(
y2α−1

x(p−1)(2α−1)

)
fp(x)dydx

} 1
p

×

{
∞∫
0

∞∫
0

1

(xα + ayα)
2
(xα + byα)

2

(
x2α−1

y(q−1)(2α−1)

)
gq(y)dxdy

} 1
q

=

{∞∫
0

ω̄(x) 1
xp(2α−1)+1 f

p(x)dx

} 1
p
{∞∫

0

ω(y) 1
yq(2α−1)+1 g

q(y)dy

} 1
q

= K

{∞∫
0

1
xp(2α−1)+1 f

p(x)dx

} 1
p
{∞∫

0

1
xq(2α−1)+1 g

q(x)dx

} 1
q

.

If (2.7) takes the form of equality, then the exists constants M and N , such that
they are not all zero, and (see [7])

M( y
xp(2α−1)−1 )f

p(x) = N( x
yq(2α−1)−1 )g

q(y)

a.e. in (0,∞)× (0,∞). Hence, there exists a constant C, such that

Mx−p(2α−1)fp(x) = Ny−q(2α−1)gq(y) = C

a.e. in (0,∞). We claim that M = 0. In fact, if M ̸= 0, then x−p(2α−1)−1fp(x) =

C
Mx a.e. in (0,∞), which contradicts the fact that 0 <

∞∫
0

x−p(2α−1)−1fp(x)dx < ∞.
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In the same way, we claim that N = 0. This is a contradiction. Hence by (2.7), we
have (2.6).

If the constant factor K in (2.6) is not the best possible, then there exists a
positive constant H (with H < K), such that (2.6) is still valid if we replace K
by H. For 0 < ε < p small enough, setting fε and gε as: fε(x) = gε(x) = 0, for

x ∈ (0, 1); fε(x) = xα(2− ε
p )−1; gε(x) = xα(2− ε

q )−1, for x ∈ [1,∞), then we have

H

{∞∫
0

1
xp(2α−1)+1 f

p
ε (x)dx

} 1
p
{∞∫

0

1
xq(2α−1)+1 g

q
ε(x)dx

} 1
q

= H

{∞∫
1

x−αε−1dx

} 1
p
{∞∫

1

x−αε−1dx

} 1
q

= H 1
αε .

By (2.5), we have

∞∫
0

∞∫
0

fε(x)gε(y)

(xα+ayα)2(xα+byα)2
dxdy =

∞∫
1

[
∞∫
1

yα(2−
ε
p )−1dy

(xα + ayα)
2
(xα + byα)

2

]
xα(2− ε

q )−1dx

≥ 1
αε (K + o(1))−O(1).

Hence, we find

1
αε (K + o(1))−O(1) < H

αε or (K + o(1))− αεO(1) < H.

For ε → 0+, it follows that K ≤ H. This contradicts the fact that H < K. Hence
the constant factor K in (2.6) is the best possible. �

Theorem 2.2. If 0 < p < 1, 1
p + 1

q = 1, a, b > 0, a ̸= b, α > 0 and f(x), g(x) ≥ 0,

such that 0 <
∞∫
0

1
xp(2α−1)+1 f

p(x)dx < ∞ and 0 <
∞∫
0

1
xq(2α−1)+1 g

q(x)dx < ∞, then

(2.8)

∞∫
0

∞∫
0

f(x)g(y)

(xα + ayα)
2
(xα + byα)

2 dxdy

> K

(∞∫
0

1
xp(2α−1)+1 f

p(x)dx

) 1
p
(∞∫

0

1
xq(2α−1)+1 g

q(x)dx

) 1
q

,

where the constant factor K is the best possible and K is defined by (2.3).

Proof. By the reverse Hölder’s inequality with weight (see [7]) and the same way of
giving (2.7), we obtain (2.8).

If the constant factor K in (2.8) is not the best possible, then there exists a
positive constant H (with H > K), such that (2.8) is still valid if we replace K
by H. For 0 < ε < p small enough, setting fε and gε as: fε(x) = gε(x) = 0, for
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x ∈ (0, 1); fε(x) = xα(2− ε
p )−1; gε(x) = xα(2− ε

q )−1, for x ∈ [1,∞), then we have

H

{∞∫
0

1
xp(2α−1)+1 f

p
ε (x)dx

} 1
p
{∞∫

0

1
xq(2α−1)+1 g

q
ε(x)dx

} 1
q

= H

{∞∫
1

x−αε−1dx

} 1
p
{∞∫

1

x−αε−1dx

} 1
q

= H 1
αε .

By (2.5), we have

∞∫
0

∞∫
0

fε(x)gε(y)

(xα+ayα)2(xα+byα)2
dxdy =

∞∫
1

[
∞∫
0

yα(2−
ε
p )−1dy

(xα + ayα)
2
(xα + byα)

2

]
xα(2− ε

q )−1dx

≤ 1
αε (K + o(1)) .

Hence, we find

1
αε (K + o(1)) > H

αε or (K + o(1)) > H.

For ε → 0+, it follows that K ≥ H. This contradicts the fact that H > K. Hence
the constant factor K in (2.8) is the best possible. �

Theorem 2.3. Under the same assumption of Theorem 2.1 we have

(2.9)
∞∫
0

y2αp−1

(∞∫
0

f(x)

(xα+ayα)2(xα+byα)2
dx

)p

dy < Kp
∞∫
0

fp(x)
xp(2α−1)+1 dx,

where the constant factor Kp is the best possible. Inequalities (2.9) and (2.6) are
equivalent.

Proof. Setting g(y) = y2αp−1

(∞∫
0

f(x)

(xα+ayα)2(xα+byα)2
dx

)p−1

, by (2.6), we have

(2.10)

∞∫
0

y−q(2α−1)−1gq(y)dy =
∞∫
0

y2αp−1

(∞∫
0

f(x)

(xα+ayα)2(xα+byα)2
dx

)p

dy

=
∞∫
0

∞∫
0

f(x)g(y)

(xα + ayα)
2
(xα + byα)

2 dxdy

≤ K

(∞∫
0

fp(x)
xp(2α−1)+1 dx

) 1
p
(∞∫

0

gq(y)
yq(2α−1)+1 dy

) 1
q

.

(2.11) 0 <

∞∫
0

y−q(2α−1)−1gq(y)dy ≤ Kp

∞∫
0

fp(x)

xp(2α−1)+1
dx < ∞.
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Hence by (2.6), (2.10) and (2.11) preserve the form of strict inequalities, and we
have (2.9). By Hölder’s inequality, we have
(2.12)
∞∫
0

y2αp−1

(∞∫
0

f(x)

(xα+ayα)2(xα+byα)2
dx

)p

dy

=
∞∫
0

y(2α−1)+ 1
q

(∞∫
0

f(x)

(xα+ayα)2(xα+byα)2
dx

)
y−(2α−1)− 1

q g(y)dy

=

{∞∫
0

yp(2α−1)+ p
q

(∞∫
0

f(x)

(xα+ayα)2(xα+byα)2
dx

)p

dy

} 1
p
{∞∫

0

y−q(2α−1)−1gq(y)dy

} 1
q

=

{∞∫
0

y2αp−1

(∞∫
0

f(x)

(xα+ayα)2(xα+byα)2
dx

)p

dy

} 1
p
{∞∫

0

y−q(2α−1)−1gq(y)dy

} 1
q

.

Then by (2.9), we have (2.6). Hence inequalities (2.6) and (2.9) are equivalent.
If the constant factor in (2.9) is not the best possible, then by (2.12), we can

get a contradiction that the constant factor in (2.6) is not the best possible. �

Theorem 2.4. Under the same assumption of Theorem 2.2 we have

(2.13)
∞∫
0

y2αp−1

(∞∫
0

f(x)

(xα+ayα)2(xα+byα)2
dx

)p

dy > Kp
∞∫
0

fp(x)
xp(2α−1)+1 dx,

where the constant factor Kp is the best possible. Inequalities (2.13) and (2.8) are
equivalent.

Proof. The proof of Theorem 2.3 is the similar. �
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