# On the Hilbert Type Integral Inequalities with Some Parameters and Its Reverse 

Hüseyin Yildirim*, Umut Mutlu Özkan and Mehmet Zeki Sarikaya
Department of Mathematics, Faculty of Science and Arts, Kocatepe University, Afyon-Turkey
$e$-mail: hyildir@aku.edu.tr, umut_ozkan@aku.edu.tr andsarikaya@aku.edu.tr

Abstract. This paper deals with some new generalizations of the Hardy-Hilbert type integral inequalities with some parameters. We also consider the equivalent inequalities and the reverse forms.

## 1. Introduction

If $f(x), g(x) \geq 0$, such that $0<\int_{0}^{\infty} f^{2}(x) d x<\infty$ and $0<\int_{0}^{\infty} g^{2}(x) d x<\infty$ then

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} d x d y<\pi\left(\int_{0}^{\infty} f^{2}(x) d x \int_{0}^{\infty} g^{2}(x) d x\right)^{\frac{1}{2}} \tag{1.1}
\end{equation*}
$$

where the constant factor $\pi$ is the best possible (see [1]). Inequality (1.1) had been extended by Hardy-Riesz as:

If $p>1, \frac{1}{p}+\frac{1}{q}=1, f(x), g(x) \geq 0$, such that $0<\int_{0}^{\infty} f^{p}(x) d x<\infty$ and $0<\int_{0}^{\infty} g^{q}(x) d x<\infty$, then we have the following Hardy-Hilbert's integral inequality:

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{x+y} d x d y<\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}\left(\int_{0}^{\infty} f^{p}(x) d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} g^{q}(x) d x\right)^{\frac{1}{q}}, \tag{1.2}
\end{equation*}
$$

where the constant factor $\frac{\pi}{\sin \left(\frac{\pi}{p}\right)}$ is the best possible constant (see [2]). This inequality play an important role in mathematical analysis and its applications (see [3]). In [4] and [5], Yang gave some new generalizations of (1.2) by introducing a parameter $\lambda>0$, and Yang et al. [6] gave an extension of the above results by introducing the index of conjugate parameter $(r, s)\left(r>1, \frac{1}{r}+\frac{1}{s}=1\right)$ as follows:

* Corresponding author.

Received May 5, 2008; accepted September 3, 2008.
2000 Mathematics Subject Classification: 26D10, 11B39.
Key words and phrases: Hardy-Hilbert type integral inequalities, weighted function, Hölder inequality.

$$
\text { If } f(x), g(x) \geq 0 \text { and } 0<\int_{0}^{\infty} x^{p\left(1-\frac{\lambda}{r}\right)-1} f^{p}(x) d x<\infty, 0<\int_{0}^{\infty} x^{q\left(1-\frac{\lambda}{s}\right)-1} g^{q}(x) d x<
$$ $\infty$, then

(1.3)

$$
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{(x+y)^{\lambda}} d x d y<B\left(\frac{\lambda}{r}, \frac{\lambda}{s}\right)\left(\int_{0}^{\infty} x^{p\left(1-\frac{\lambda}{r}\right)-1} f^{p}(x) d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} x^{q\left(1-\frac{\lambda}{s}\right)-1} g^{q}(x) d x\right)^{\frac{1}{q}}
$$

where the constant factor $B\left(\frac{\lambda}{r}, \frac{\lambda}{s}\right)$ is the best possible constant. In particular, for $\lambda=1, r=p$, inequality (1.3) reduces to (1.2); for $\lambda=4, r=s=2$, inequality (1.3) reduces to:

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{(x+y)^{4}} d x d y<\frac{1}{6}\left(\int_{0}^{\infty} \frac{1}{x^{p+1}} f^{p}(x) d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} \frac{1}{x^{q+1}} g^{q}(x) d x\right)^{\frac{1}{q}} \tag{1.4}
\end{equation*}
$$

Recently, Xie et al.[8] gave a new Hilbert type integral inequality with some parameters and its reverse as follows:

If $p>1, \frac{1}{p}+\frac{1}{q}=1, a, b>0, a \neq b, f(x), g(x) \geq 0$, such that $0<\int_{0}^{\infty} \frac{1}{x^{p+1}} f^{p}(x) d x<\infty$ and $0<\int_{0}^{\infty} \frac{1}{x^{q+1}} g^{q}(x) d x<\infty$, then

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{(x+a y)^{2}(x+b y)^{2}} d x d y<K\left(\int_{0}^{\infty} \frac{1}{x^{p+1}} f^{p}(x) d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} \frac{1}{x^{q+1}} g^{q}(x) d x\right)^{\frac{1}{q}} \tag{1.5}
\end{equation*}
$$

where the constant factor $K=\frac{a+b}{(b-a)^{2}}\left[\frac{1}{b-a} \ln \left(\frac{b}{a}\right)-\frac{2}{a+b}\right]$ is the best possible constant. If $0<p<1$, then

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{(x+a y)^{2}(x+b y)^{2}} d x d y>K\left(\int_{0}^{\infty} \frac{1}{x^{p+1}} f^{p}(x) d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} \frac{1}{x^{q+1}} g^{q}(x) d x\right)^{\frac{1}{q}} \tag{1.6}
\end{equation*}
$$

where K the constant factor is the best possible.
In this paper, by introducing some parameters and estimating the weight function, we prove Hilbert type integral inequality with a best constant factor similar to (1.4) and (1.5). The equivalent inequalities and the reverse forms are considered.

## 2. Main Results

In order to obtain our results, we need the following lemmas.
Lemma 2.1. If $a, b>0, a \neq b, \alpha>0$, the weight function $\bar{\omega}(x)$ and $\omega(y)$ defined by

$$
\begin{equation*}
\bar{\omega}(x)=\int_{0}^{\infty} \frac{x^{2 \alpha} y^{2 \alpha-1}}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d y, x \in(0, \infty) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\omega(y)=\int_{0}^{\infty} \frac{x^{2 \alpha-1} y^{2 \alpha}}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x, y \in(0, \infty), \tag{2.2}
\end{equation*}
$$

then we have

$$
\begin{equation*}
\bar{\omega}(x)=\omega(y)=K:=\frac{1}{\alpha} \frac{a+b}{(b-a)^{2}}\left[\frac{1}{b-a} \ln \left(\frac{b}{a}\right)-\frac{2}{a+b}\right] . \tag{2.3}
\end{equation*}
$$

Proof. For fixed $x$, setting $u=\frac{y^{\alpha}}{x^{\alpha}}$ in (2.1), we obtain

$$
\begin{aligned}
\bar{\omega}(x) & =\frac{1}{\alpha} \int_{0}^{\infty} \frac{u}{(1+a u)^{2}(1+b u)^{2}} d u \\
& =\frac{1}{\alpha} \frac{a+b}{(b-a)^{2}}\left[\frac{1}{b-a} \ln \left(\frac{b}{a}\right)-\frac{2}{a+b}\right] .
\end{aligned}
$$

Hence we obtain $\bar{\omega}(x)=K$. In the same way, we obtain $\omega(y)=K$.
Xie proved the following lemma in [8, Lemma 2.2].
Lemma 2.2. If $a, b>0, a \neq b$ and $\alpha>0$ for $0<\varepsilon<p$, we have

$$
\begin{equation*}
\int_{0}^{\infty} \frac{u^{1-\frac{\varepsilon}{p}}}{(1+a u)^{2}(1+b u)^{2}} d u=K+o(1), \quad \varepsilon \rightarrow 0^{+} \tag{2.4}
\end{equation*}
$$

Lemma 2.3. If $p>1($ or $0<p<1), \frac{1}{p}+\frac{1}{q}=1, a, b>0, a \neq b, \alpha>0$ and $0<\varepsilon<p$, setting

$$
I:=\int_{1}^{\infty}\left[\int_{1}^{\infty} \frac{y^{\alpha\left(2-\frac{\varepsilon}{p}\right)-1} d y}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}}\right] x^{\alpha\left(2-\frac{\varepsilon}{q}\right)-1} d x
$$

then we have

$$
\begin{equation*}
\frac{1}{\alpha \varepsilon}(K+o(1))-O(1) \leq I \leq \frac{1}{\alpha \varepsilon}(K+o(1)), \quad \varepsilon \rightarrow 0^{+} . \tag{2.5}
\end{equation*}
$$

Proof. For fixed $x,(1+a u)^{2}(1+b u)^{2}>(a+b) u$, setting $y^{\alpha}=x^{\alpha} u$, then we obtain the following inequality by (2.4).

$$
\begin{aligned}
I= & \int_{1}^{\infty} x^{-\alpha \varepsilon-1}\left[\int_{x^{-\alpha}}^{\infty} \frac{u^{1-\frac{\varepsilon}{p}} d u}{(1+a u)^{2}(1+b u)^{2}}\right] d x \\
= & \int_{1}^{\infty} x^{-\alpha \varepsilon-1}\left[\int_{0}^{\infty} \frac{u^{1-\frac{\varepsilon}{p}} d u}{(1+a u)^{2}(1+b u)^{2}}\right] d x \\
& -\int_{1}^{\infty} x^{-\alpha \varepsilon-1}\left[\int_{0}^{x^{-\alpha}} \frac{u^{1-\frac{\varepsilon}{p}} d u}{(1+a u)^{2}(1+b u)^{2}}\right] d x \\
\geq & \frac{1}{\alpha \varepsilon}(K+o(1))-\frac{1}{a+b} \int_{1}^{\infty} x^{-1}\left(\int_{0}^{x^{-\alpha}} u^{-\frac{\varepsilon}{p}} d u\right) d x \\
= & \frac{1}{\alpha \varepsilon}(K+o(1))-\frac{1}{\alpha(a+b)} \frac{1}{\left(1-\frac{\varepsilon}{p}\right)^{2}} \\
= & \frac{1}{\alpha \varepsilon}(K+o(1))-O(1) .
\end{aligned}
$$

By the same way, we have

$$
I \leq \int_{1}^{\infty}\left[\int_{0}^{\infty} \frac{y^{\alpha\left(2-\frac{\varepsilon}{p}\right)-1} d y}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}}\right] x^{\alpha\left(2-\frac{\varepsilon}{q}\right)-1} d x=\frac{1}{\alpha \varepsilon}(K+o(1)) .
$$

Theorem 2.1. If $p>1, \frac{1}{p}+\frac{1}{q}=1, a, b>0, a \neq b, \alpha>0$ and $f(x), g(x) \geq 0$, such that $0<\int_{0}^{\infty} \frac{1}{x^{p(2 \alpha-1)+1}} f^{p}(x) d x<\infty$ and $0<\int_{0}^{\infty} \frac{1}{x^{q(2 \alpha-1)+1}} g^{q}(x) d x<\infty$, then

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x d y<K\left(\int_{0}^{\infty} \frac{1}{x^{p(2 \alpha-1)+1}} f^{p}(x) d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} \frac{1}{x^{q(2 \alpha-1)+1}} g^{q}(x) d x\right)^{\frac{1}{q}} \tag{2.6}
\end{equation*}
$$

where the constant factor $K$ is the best possible and $K$ is defined by (2.3).
Proof. By Hölder's inequality, with weight (see [7]) and (2.1)-(2.3), we have

$$
\begin{align*}
J:= & \int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x d y \\
= & \int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}}\left[\frac{y^{\frac{2 \alpha-1}{p-1}}}{x^{\frac{2 \alpha-1}{q}}} f(x)\right]\left[\frac{x^{\frac{2 \alpha-1}{q}}}{y^{\frac{2 \alpha-1}{p}}} g(y)\right] d x d y \\
\leq & \left\{\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}}\left(\frac{y^{2 \alpha-1}}{x^{(p-1)(2 \alpha-1)}}\right) f^{p}(x) d y d x\right\}^{\frac{1}{p}} \\
& \times\left\{\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}}\left(\frac{x^{2 \alpha-1}}{y^{(q-1)(2 \alpha-1)}}\right) g^{q}(y) d x d y\right\}^{\frac{1}{q}}  \tag{2.7}\\
= & \left\{\int_{0}^{\infty} \bar{\omega}(x) \frac{1}{x^{p(2 \alpha-1)+1}} f^{p}(x) d x\right\}^{\frac{1}{p}}\left\{\int_{0}^{\infty} \omega(y) \frac{1}{y^{q(2 \alpha-1)+1}} g^{q}(y) d y\right\}^{\frac{1}{q}} \\
= & K\left\{\int_{0}^{\infty} \frac{1}{x^{p(2 \alpha-1)+1}} f^{p}(x) d x\right\}^{\frac{1}{p}}\left\{\int_{0}^{\infty} \frac{1}{x^{q(2 \alpha-1)+1}} g^{q}(x) d x\right\}^{\frac{1}{q}} .
\end{align*}
$$

If (2.7) takes the form of equality, then the exists constants $M$ and $N$, such that they are not all zero, and (see [7])

$$
M\left(\frac{y}{x^{p(2 \alpha-1)-1}}\right) f^{p}(x)=N\left(\frac{x}{y^{q(2 \alpha-1)-1}}\right) g^{q}(y)
$$

a.e. in $(0, \infty) \times(0, \infty)$. Hence, there exists a constant $C$, such that

$$
M x^{-p(2 \alpha-1)} f^{p}(x)=N y^{-q(2 \alpha-1)} g^{q}(y)=C
$$

a.e. in $(0, \infty)$. We claim that $M=0$. In fact, if $M \neq 0$, then $x^{-p(2 \alpha-1)-1} f^{p}(x)=$ $\frac{C}{M x}$ a.e. in $(0, \infty)$, which contradicts the fact that $0<\int_{0}^{\infty} x^{-p(2 \alpha-1)-1} f^{p}(x) d x<\infty$.

In the same way, we claim that $N=0$. This is a contradiction. Hence by (2.7), we have (2.6).

If the constant factor $K$ in (2.6) is not the best possible, then there exists a positive constant $H$ (with $H<K$ ), such that (2.6) is still valid if we replace $K$ by $H$. For $0<\varepsilon<p$ small enough, setting $f_{\varepsilon}$ and $g_{\varepsilon}$ as: $f_{\varepsilon}(x)=g_{\varepsilon}(x)=0$, for $x \in(0,1) ; f_{\varepsilon}(x)=x^{\alpha\left(2-\frac{\varepsilon}{p}\right)-1} ; g_{\varepsilon}(x)=x^{\alpha\left(2-\frac{\varepsilon}{q}\right)-1}$, for $x \in[1, \infty)$, then we have

$$
\begin{aligned}
H & \left\{\int_{0}^{\infty} \frac{1}{x^{p(2 \alpha-1)+1}} f_{\varepsilon}^{p}(x) d x\right\}^{\frac{1}{p}}\left\{\int_{0}^{\infty} \frac{1}{x^{q(2 \alpha-1)+1}} g_{\varepsilon}^{q}(x) d x\right\}^{\frac{1}{q}} \\
& =H\left\{\int_{1}^{\infty} x^{-\alpha \varepsilon-1} d x\right\}^{\frac{1}{p}}\left\{\int_{1}^{\infty} x^{-\alpha \varepsilon-1} d x\right\}^{\frac{1}{q}}=H \frac{1}{\alpha \varepsilon}
\end{aligned}
$$

By (2.5), we have

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f_{\varepsilon}(x) g_{\varepsilon}(y)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x d y & =\int_{1}^{\infty}\left[\int_{1}^{\infty} \frac{y^{\alpha\left(2-\frac{\varepsilon}{p}\right)-1} d y}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}}\right] x^{\alpha\left(2-\frac{\varepsilon}{q}\right)-1} d x \\
& \geq \frac{1}{\alpha \varepsilon}(K+o(1))-O(1) .
\end{aligned}
$$

Hence, we find

$$
\frac{1}{\alpha \varepsilon}(K+o(1))-O(1)<\frac{H}{\alpha \varepsilon} \quad \text { or } \quad(K+o(1))-\alpha \varepsilon O(1)<H .
$$

For $\varepsilon \rightarrow 0^{+}$, it follows that $K \leq H$. This contradicts the fact that $H<K$. Hence the constant factor $K$ in (2.6) is the best possible.

Theorem 2.2. If $0<p<1, \frac{1}{p}+\frac{1}{q}=1, a, b>0, a \neq b, \alpha>0$ and $f(x), g(x) \geq 0$, such that $0<\int_{0}^{\infty} \frac{1}{x^{p(2 \alpha-1)+1}} f^{p}(x) d x<\infty$ and $0<\int_{0}^{\infty} \frac{1}{x^{q(2 \alpha-1)+1}} g^{q}(x) d x<\infty$, then

$$
\begin{gather*}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x d y \\
>K\left(\int_{0}^{\infty} \frac{1}{x^{p(2 \alpha-1)+1}} f^{p}(x) d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} \frac{1}{x^{q(2 \alpha-1)+1}} g^{q}(x) d x\right)^{\frac{1}{q}}, \tag{2.8}
\end{gather*}
$$

where the constant factor $K$ is the best possible and $K$ is defined by (2.3).
Proof. By the reverse Hölder's inequality with weight (see [7]) and the same way of giving (2.7), we obtain (2.8).

If the constant factor $K$ in (2.8) is not the best possible, then there exists a positive constant $H$ (with $H>K$ ), such that (2.8) is still valid if we replace $K$ by $H$. For $0<\varepsilon<p$ small enough, setting $f_{\varepsilon}$ and $g_{\varepsilon}$ as: $f_{\varepsilon}(x)=g_{\varepsilon}(x)=0$, for
$x \in(0,1) ; f_{\varepsilon}(x)=x^{\alpha\left(2-\frac{\varepsilon}{p}\right)-1} ; g_{\varepsilon}(x)=x^{\alpha\left(2-\frac{\varepsilon}{q}\right)-1}$, for $x \in[1, \infty)$, then we have

$$
\begin{aligned}
& H\left\{\int_{0}^{\infty} \frac{1}{x^{p(2 \alpha-1)+1}} f_{\varepsilon}^{p}(x) d x\right\}^{\frac{1}{p}}\left\{\int_{0}^{\infty} \frac{1}{x^{q(2 \alpha-1)+1}} g_{\varepsilon}^{q}(x) d x\right\}^{\frac{1}{q}} \\
&=H\left\{\int_{1}^{\infty} x^{-\alpha \varepsilon-1} d x\right\}^{\frac{1}{p}}\left\{\int_{1}^{\infty} x^{-\alpha \varepsilon-1} d x\right\}^{\frac{1}{q}}=H \frac{1}{\alpha \varepsilon}
\end{aligned}
$$

By (2.5), we have

$$
\begin{aligned}
\int_{0}^{\infty} \int_{0}^{\infty} \frac{f_{\varepsilon}(x) g_{\varepsilon}(y)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x d y & =\int_{1}^{\infty}\left[\int_{0}^{\infty} \frac{y^{\alpha\left(2-\frac{\varepsilon}{p}\right)-1} d y}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}}\right] x^{\alpha\left(2-\frac{\varepsilon}{q}\right)-1} d x \\
& \leq \frac{1}{\alpha \varepsilon}(K+o(1)) .
\end{aligned}
$$

Hence, we find

$$
\frac{1}{\alpha \varepsilon}(K+o(1))>\frac{H}{\alpha \varepsilon} \quad \text { or } \quad(K+o(1))>H .
$$

For $\varepsilon \rightarrow 0^{+}$, it follows that $K \geq H$. This contradicts the fact that $H>K$. Hence the constant factor $K$ in (2.8) is the best possible.

Theorem 2.3. Under the same assumption of Theorem 2.1 we have

$$
\begin{equation*}
\int_{0}^{\infty} y^{2 \alpha p-1}\left(\int_{0}^{\infty} \frac{f(x)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x\right)^{p} d y<K^{p} \int_{0}^{\infty} \frac{f^{p}(x)}{x^{p(2 \alpha-1)+1}} d x \tag{2.9}
\end{equation*}
$$

where the constant factor $K^{p}$ is the best possible. Inequalities (2.9) and (2.6) are equivalent.
Proof. Setting $g(y)=y^{2 \alpha p-1}\left(\int_{0}^{\infty} \frac{f(x)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x\right)^{p-1}$, by (2.6), we have

$$
\begin{align*}
\int_{0}^{\infty} y^{-q(2 \alpha-1)-1} g^{q}(y) d y & =\int_{0}^{\infty} y^{2 \alpha p-1}\left(\int_{0}^{\infty} \frac{f(x)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x\right)^{p} d y \\
& =\int_{0}^{\infty} \int_{0}^{\infty} \frac{f(x) g(y)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x d y  \tag{2.10}\\
& \leq K\left(\int_{0}^{\infty} \frac{f^{p}(x)}{x^{p(2 \alpha-1)+1}} d x\right)^{\frac{1}{p}}\left(\int_{0}^{\infty} \frac{g^{q}(y)}{y^{q(2 \alpha-1)+1}} d y\right)^{\frac{1}{q}} .
\end{align*}
$$

$$
\begin{equation*}
0<\int_{0}^{\infty} y^{-q(2 \alpha-1)-1} g^{q}(y) d y \leq K^{p} \int_{0}^{\infty} \frac{f^{p}(x)}{x^{p(2 \alpha-1)+1}} d x<\infty . \tag{2.11}
\end{equation*}
$$

Hence by (2.6), (2.10) and (2.11) preserve the form of strict inequalities, and we have (2.9). By Hölder's inequality, we have (2.12)

$$
\begin{aligned}
& \int_{0}^{\infty} y^{2 \alpha p-1}\left(\int_{0}^{\infty} \frac{f(x)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x\right)^{p} d y \\
& \quad=\int_{0}^{\infty} y^{(2 \alpha-1)+\frac{1}{q}}\left(\int_{0}^{\infty} \frac{f(x)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x\right) y^{-(2 \alpha-1)-\frac{1}{q}} g(y) d y \\
& \quad=\left\{\int_{0}^{\infty} y^{p(2 \alpha-1)+\frac{p}{q}}\left(\int_{0}^{\infty} \frac{f(x)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x\right)^{p} d y\right\}^{\frac{1}{p}}\left\{\int_{0}^{\infty} y^{-q(2 \alpha-1)-1} g^{q}(y) d y\right\}^{\frac{1}{q}} \\
& \quad=\left\{\int_{0}^{\infty} y^{2 \alpha p-1}\left(\int_{0}^{\infty} \frac{f(x)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x\right)^{p} d y\right\}^{\frac{1}{p}}\left\{\int_{0}^{\infty} y^{-q(2 \alpha-1)-1} g^{q}(y) d y\right\}^{\frac{1}{q}} .
\end{aligned}
$$

Then by (2.9), we have (2.6). Hence inequalities (2.6) and (2.9) are equivalent.
If the constant factor in (2.9) is not the best possible, then by (2.12), we can get a contradiction that the constant factor in (2.6) is not the best possible.

Theorem 2.4. Under the same assumption of Theorem 2.2 we have

$$
\begin{equation*}
\int_{0}^{\infty} y^{2 \alpha p-1}\left(\int_{0}^{\infty} \frac{f(x)}{\left(x^{\alpha}+a y^{\alpha}\right)^{2}\left(x^{\alpha}+b y^{\alpha}\right)^{2}} d x\right)^{p} d y \quad>\quad K^{p} \int_{0}^{\infty} \frac{f^{p}(x)}{x^{p(2 \alpha-1)+1}} d x \tag{2.13}
\end{equation*}
$$

where the constant factor $K^{p}$ is the best possible. Inequalities (2.13) and (2.8) are equivalent.
Proof. The proof of Theorem 2.3 is the similar.

## References

[1] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1952.
[2] G. H. Hardy, Note on the theorem of Hilbert concerning series of positive terms, Proceeding London Math. Soc., Record of Proc. XLV-XLIV, 23(2), 1925.
[3] D. S. Mintrinović, J. E. Pečarić and A. M. Fink, Inequalities involving functions and their integrals and derivatives, Kluwer Academic Publishers, Boston, 1991.
[4] B. Yang, On Hardy-Hilbert's integral inequality, J. Math. Anal. Appl., 261(2001), 295306.
[5] B. Yang, On the extended Hilbert's integral inequality, J. Inequalities in Pure and Appl. Math., 5(4)(2004), Article 96.
[6] B. Yang, I Bnaetić, M. Krnic and J. E. Pečarić, Generalization of Hilbert and HardyHilbert integral inequalities, Math. Inequal. Appl., 8(2)(2005), 259-272.
[7] J. Kang, Applied inequalities, Shangdong Science and Technology Press, Jinan, 2004.
[8] Z. Xie and B. Yang, A new Hilbert-type integral inequality with Parameters and its reverse, Kyungpook Math. J., 48(2008), 93-100.

