On Two Dimensional q-Hölder's Inequality

Wengui Yang
Ministry of Public Education, Sanmenxia Polytechnic, Sanmenxia 472000, China
e-mail : yangwg8088@163.com
Abstract. In this article, the reverse q-Hölder type inequality and two dimensional q Hölder's inequality are established. We also obtain some q-integral inequalities by using q-Hölder's inequality which give q-Hardy's inequalities as spacial cases.

1. Introduction

Throughout this paper, we will fit $q \in(0,1)$. We denote by I one of the following sets: (1) $\mathbb{R}_{q,+}=\left\{q^{n}: n \in \mathbb{Z}\right\} ;(2)[0, b]_{q}=\left\{b q^{n}: n \in \mathbb{Z}\right\}, b>0$; (3) $[a, b]_{q}=\left\{b q^{k}: 0 \leq k \leq n\right\}, b>0, a=b q^{n}, n \in \mathbb{Z}$. Due to restrictions on the number of pages, the basic definitions and theorems of q-integral were omitted, and the reader was referred to $[3,2,4]$. And we note $\int_{I} f(x) d_{q} x$ the q-integral of f on the correspondent I.

Let p and p^{\prime} be two positive reals satisfying $p>1$ and $1 / p+1 / p^{\prime}=1$, and f and g be two functions defined on I. Then

$$
\begin{equation*}
\left|\int_{I} f(x) g(x) d_{q} x\right| \leq\left(\int_{I}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}\left(\int_{I}|g(x)|^{p^{\prime}} d_{q} x\right)^{\frac{1}{p^{\prime}}} \tag{1.1}
\end{equation*}
$$

The above inequality was given by Fitouhi and Brahim [3], but the condition $p>0$ was not added. According to the definition of q-integral, we have $\left|\int_{I} f(x) g(x) d_{q} x\right| \leq$ $\int_{I}|f(x) g(x)| d_{q} x$. So, the above conditions hold, (1.1) is restated as follows:

$$
\begin{equation*}
\int_{I}|f(x) g(x)| d_{q} x \leq\left(\int_{I}|f(x)|^{p} d_{q} x\right)^{\frac{1}{p}}\left(\int_{I}|g(x)|^{p^{\prime}} d_{q} x\right)^{\frac{1}{p^{\prime}}} \tag{1.2}
\end{equation*}
$$

Tuna and Kutukcu [5] and Ammi and Torres [1] gave two dimensional Δ Hölder's inequalities and two dimensional \diamond_{α}-Hölder's inequalities, respectively. Motivated by [5] and [1], we will study the reverse q-Hölder type inequality and two dimensional q-Hölder's inequality. We also obtain some q-integral inequalities by using q-Hölder's inequality which give q-Hardy's inequalities as spacial cases.

Received October 1, 2010; accepted October 9, 2012.
2010 Mathematics Subject Classification: 26A39, 26D15.
Key words and phrases: q-Hölder's inequality, q-Hardy's inequalities, q-integral inequalities.

2. Main results

Theorem 2.1. For two positive functions f and g satisfying $0<m \leq f^{p} / g^{p^{\prime}} \leq$ $M<\infty$ on I. If $1 / p+1 / p^{\prime}=1$ with $p>1$, we have

$$
\begin{equation*}
\left(\int_{I} f^{p}(x) d_{q} x\right)^{\frac{1}{p}}\left(\int_{I} g^{p^{\prime}}(x) d_{q} x\right)^{\frac{1}{p^{\prime}}} \leq\left(\frac{M}{m}\right)^{\frac{1}{p p^{\prime}}} \int_{I} f(x) g(x) d_{q} x . \tag{2.1}
\end{equation*}
$$

Proof. Since $f^{p} / g^{p^{\prime}} \leq M$, then $f^{p / p^{\prime}} \leq M^{1 / p^{\prime}} g$. Multiplying by $f>0$, it follows that

$$
f^{p}=f^{1+\frac{p}{p^{\prime}}} \leq M^{\frac{1}{p^{\prime}}} f g
$$

and so,

$$
\begin{equation*}
\left(\int_{I} f^{p}(x) d_{q} x\right)^{\frac{1}{p}} \leq M^{\frac{1}{p p^{\prime}}}\left(\int_{I} f(x) g(x) d_{q} x\right)^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

On the other hand, since $m \leq f^{p} / g^{p^{\prime}}$, then $f \geq m^{1 / p} g^{p^{\prime} / p}$, hence

$$
\int_{I} f(x) g(x) d_{q} x \geq \int_{I} m^{\frac{1}{p}} g^{1+\frac{p^{\prime}}{p}}(x) d_{q} x=m^{\frac{1}{p}} \int_{I} g^{p^{\prime}}(x) d_{q} x .
$$

We obtain that

$$
\begin{equation*}
\left(\int_{I} f(x) g(x) d_{q} x\right)^{\frac{1}{p^{\prime}}} \geq m^{\frac{1}{p p^{\prime}}}\left(\int_{I} g^{p^{\prime}}(x) d_{q} x\right)^{\frac{1}{p^{\prime}}} \tag{2.3}
\end{equation*}
$$

Combining (2.2) and (2.3), we have the desired inequality (2.1). The proof is completed.

Theorem 2.2. Let $f(x, y) g(x, y)$ and $h(x, y)$ be three functions defined on I^{2}. If $1 / p+1 / p^{\prime}=1$ with $p>1$, we have
(2.4) $\int_{I} \int_{I}|h(x, y) f(x, y) g(x, y)| d_{q} x d_{q} y$

$$
\leq\left(\int_{I} \int_{I}|h(x, y) \| f(x, y)|^{p} d_{q} x d_{q} y\right)^{\frac{1}{p}} \times\left(\int_{I} \int_{I}|h(x, y) \| g(x, y)|^{p^{\prime}} d_{q} x d_{q} y\right)^{\frac{1}{p^{\prime}}}
$$

Proof. Inequality (2.4) is trivially true in the case when f or g or h is identically zero. Suppose that

$$
\left(\int_{I} \int_{I}|h(x, y)||f(x, y)|^{p} d_{q} x d_{q} y\right)\left(\int_{I} \int_{I}|h(x, y)||g(x, y)|^{p^{\prime}} d_{q} x d_{q} y\right) \neq 0
$$

Apply the following Young's inequality

$$
x^{\frac{1}{p}} y^{\frac{1}{p^{\prime}}} \leq \frac{1}{p} x+\frac{1}{p^{\prime}} y, \quad x, y \geq 0 \quad \text { and } \quad \frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad p>1,
$$

to

$$
\alpha(x, y)=\frac{|h(x, y)||f(x, y)|^{p}}{\int_{I} \int_{I}|h(x, y) \| f(x, y)|^{p} d_{q} x d_{q} y}
$$

and

$$
\beta(x, y)=\frac{|h(x, y) \| g(x, y)|^{p^{\prime}}}{\int_{I} \int_{I}|h(x, y)||g(x, y)|^{p^{\prime}} d_{q} x d_{q} y}
$$

obtaining

$$
\begin{aligned}
& \frac{|h(x, y)|^{\frac{1}{p}}|f(x, y)||h(x, y)|^{\frac{1}{p^{\prime}}}|g(x, y)|}{\left(\int_{I} \int_{I}|h(x, y)||f(x, y)|^{p} d_{q} x d_{q} y\right)^{\frac{1}{p}}\left(\int_{I} \int_{I}|h(x, y)||g(x, y)|^{p^{\prime}} d_{q} x d_{q} y\right)^{\frac{1}{p^{\prime}}}} \\
\leq & \frac{1}{p} \frac{|h(x, y)||f(x, y)|^{p}}{\int_{I} \int_{I}|h(x, y)||f(x, y)|^{p} d_{q} x d_{q} y}+\frac{1}{p^{\prime}} \frac{|h(x, y)||g(x, y)|^{p^{\prime}}}{\int_{I} \int_{I}|h(x, y)||g(x, y)|^{p^{\prime}} d_{q} x d_{q} y} .
\end{aligned}
$$

Integrating both sides of the obtained inequality, we have

$$
\begin{aligned}
& \int_{I} \int_{I}\left\{\frac{|h(x, y)|^{\frac{1}{p}}|f(x, y)|}{\left(\int_{I} \int_{I}|h(x, y)||f(x, y)|^{p} d_{q} x d_{q} y\right)^{\frac{1}{p}}}\right. \\
& \left.\times \frac{|h(x, y)|^{\frac{1}{p^{\prime}}}|g(x, y)|}{\left(\int_{I} \int_{I}|h(x, y)||g(x, y)|^{p^{\prime}} d_{q} x d_{q} y\right)^{\frac{1}{p^{\prime}}}}\right\} d_{q} x d_{q} y \\
\leq & \int_{I} \int_{I} \frac{1}{p} \frac{|h(x, y)||f(x, y)|^{p}}{\int_{I} \int_{I}|h(x, y)||f(x, y)|^{p} d_{q} x d_{q} y} d_{q} x d_{q} y \\
& +\int_{I} \int_{I} \frac{1}{p^{\prime}} \frac{|h(x, y)||g(x, y)|^{p^{\prime}}}{\int_{I} \int_{I}|h(x, y)||g(x, y)|^{p^{\prime}} d_{q} x d_{q} y} d_{q} x d_{q} y \\
= & \frac{1}{p}+\frac{1}{p^{\prime}}=1
\end{aligned}
$$

This directly gives the desired inequality (2.4). The proof is completed.
Corollary 2.1. Let $f(x, y) g(x, y)$ and $h(x, y)$ be three functions defined on I^{2}. Then

$$
\begin{align*}
\left(\int_{I} \int_{I}|h(x, y) f(x, y) g(x, y)| d_{q} x d_{q} y\right)^{2} \leq & \left(\int_{I} \int_{I}|h(x, y) \| f(x, y)|^{2} d_{q} x d_{q} y\right) \\
& \times\left(\int_{I} \int_{I}|h(x, y) \| g(x, y)|^{2} d_{q} x d_{q} y\right) . \tag{2.5}
\end{align*}
$$

Proof. The Cauchy-Schwartz inequality (2.5) is the particular case $p=p^{\prime}=2$ of (2.4).

Theorem 2.3. Let $K(x, y) f(x)$ and $g(y), \varphi(x)$ and $\psi(y)$ be nonnegative functions. Let

$$
F(x)=\int_{I} K(x, y) \psi^{-p}(y) d_{q} y
$$

and

$$
G(y)=\int_{I} K(x, y) \varphi^{-p^{\prime}}(x) d_{q} x
$$

where $1 / p+1 / p^{\prime}=1$ with $p>1$. Then the two inequalities

$$
\begin{align*}
& \int_{I} \int_{I} K(x, y) f(x) g(y) d_{q} x d_{q} y \tag{2.6}\\
& \leq\left(\int_{I} \varphi^{p}(x) F(x) f^{p}(x) d_{q} x\right)^{\frac{1}{p}} \times\left(\int_{I} \psi^{p^{\prime}}(y) G(y) g^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}}
\end{align*}
$$

and
(2.7) $\int_{I} G^{1-p}(y) \psi^{-p}(y)\left(\int_{I} K(x, y) f(x) d_{q} x\right)^{p} d_{q} y \leq \int_{I} \varphi^{p}(x) F(x) f^{p}(x) d_{q} x$
hold and are equivalent. Equation (2.7) is the q-Hardy's inequality.
Proof. First, we prove that (2.6) hold. Write

$$
\int_{I} \int_{I} K(x, y) f(x) g(y) d_{q} x d_{q} y=\int_{I} \int_{I} K(x, y) f(x) \frac{\varphi(x)}{\psi(y)} g(y) \frac{\psi(y)}{\varphi(x)} d_{q} x d_{q} y
$$

Applying q-Hölder's inequality (1.2), we have

$$
\begin{aligned}
& \int_{I} \int_{I} K(x, y) f(x) g(y) d_{q} x d_{q} y \\
& \leq\left(\int_{I} \varphi^{p}(x) F(x) f^{p}(x) d_{q} x\right)^{\frac{1}{p}} \times\left(\int_{I} \psi^{p^{\prime}}(y) G(y) g^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

Now we show that (2.6) is equivalent to (2.7). Suppose that inequality (2.6) is verified. Set

$$
g(y)=G^{1-p}(y) \psi^{-p}(y)\left(\int_{I} K(x, y) f(x) d_{q} x\right)^{p-1}
$$

Using (2.6) and taking into account that $1 / p+1 / p^{\prime}=1$ with $p>1$, we obtain

$$
\begin{aligned}
& \int_{I} G^{1-p}(y) \psi^{-p}(y)\left(\int_{I} K(x, y) f(x) d_{q} x\right)^{p} d_{q} y=\int_{I} \int_{I} K(x, y) f(x) g(y) d_{q} x d_{q} y \\
\leq & \left(\int_{I} \varphi^{p}(x) F(x) f^{p}(x) d_{q} x\right)^{\frac{1}{p}}\left(\int_{I} \psi^{p^{\prime}}(y) G(y) g^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}} \\
= & \left(\int_{I} \varphi^{p}(x) F(x) f^{p}(x) d_{q} x\right)^{\frac{1}{p}}\left(\int_{I} G^{1-p}(y) \psi^{-p}(y)\left(\int_{I} K(x, y) f(x) d_{q} x\right)^{p} d_{q} y\right)^{\frac{1}{p^{\prime}}} .
\end{aligned}
$$

Inequality (2.7) is obtained by dividing both sides of the previous inequality by

$$
\left(\int_{I} G^{1-p}(y) \psi^{-p}(y)\left(\int_{I} K(x, y) f(x) d_{q} x\right)^{p} d_{q} y\right)^{\frac{1}{p^{\prime}}}
$$

Reciprocally, suppose that inequality (2.7) is valid. From q-Hardy's inequality we can write that

$$
\begin{aligned}
& \int_{I} \int_{I} K(x, y) f(x) g(y) d_{q} x d_{q} y \\
= & \int_{I}\left(\psi^{-1}(y) G^{-1 / p^{\prime}}(y) \int_{I} K(x, y) f(x) d_{q} x\right) \psi(y) G^{1 / p^{\prime}}(y) g(y) d_{q} y \\
\leq & \left(\int_{I} G^{1-p}(y) \psi^{-p}(y)\left(\int_{I} K(x, y) f(x) d_{q} x\right)^{p} d_{q} y\right)^{\frac{1}{p}}\left(\int_{I} \psi^{p}(y) G(y) g^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}} .
\end{aligned}
$$

Using (2.7), we get that

$$
\begin{aligned}
\int_{I} \int_{I} K(x, y) f(x) g(y) d_{q} x d_{q} y \leq & \left(\int_{I} \varphi^{p}(x) F(x) f^{p}(x) d_{q} x\right)^{\frac{1}{p}} \\
& \times\left(\int_{I} \psi^{p^{\prime}}(y) G(y) g^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

which completes the proof.
As corollaries of Theorem 2.3 we have the following results. Without loss of generality, only take $I=[a, b]_{q}$ for example.

Corollary 2.2. Let $h(y) f(x)$ and $g(y), \varphi(x)$ and $\psi(y)$ be nonnegative functions, and $1 / p+1 / p^{\prime}=1$ with $p>1$. Setting $H(y)=h(y) \psi^{-p}(y)$, then the two inequalities

$$
\begin{aligned}
\int_{a}^{b} \int_{a}^{y} h(y) f(x) g(y) d_{q} x d_{q} y \leq & \left(\int_{a}^{b} \varphi^{p}(x) f^{p}(x)\left(\int_{x}^{b} H(y) d_{q} y\right) d_{q} x\right)^{\frac{1}{p}} \\
& \times\left(\int_{a}^{b} \psi^{p^{\prime}}(y) g^{p^{\prime}}(y) h(y)\left(\int_{a}^{y} \varphi^{-p^{\prime}}(y) d_{q} x\right) d_{q} y\right)^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{a}^{b} H(y)\left(\int_{a}^{y} \varphi^{-p^{\prime}}(y) d_{q} x\right)^{1-p}\left(\int_{a}^{y} f(x) d_{q} x\right)^{p} d_{q} y \\
& \leq\left(\int_{a}^{b} \varphi^{p}(x) f^{p}(x)\left(\int_{x}^{b} H(y) d_{q} y\right) d_{q} x\right)^{\frac{1}{p}}
\end{aligned}
$$

hold and are equivalent.

Proof. Use Theorem 2.3 with $K(x, y)=\left\{\begin{array}{cll}h(y), & \text { if } & x \leq y, \\ 0, & \text { if } & x>y .\end{array}\right.$
Corollary 2.3. Let $h(y) f(x)$ and $g(y), \varphi(x)$ and $\psi(y)$ be nonnegative functions, and $1 / p+1 / p^{\prime}=1$ with $p>1$. Setting $H(y)=h(y) \psi^{-p}(y)$, then the two inequalities

$$
\begin{aligned}
\int_{a}^{b} \int_{y}^{b} h(y) f(x) g(y) d_{q} x d_{q} y \leq & \left(\int_{a}^{b} \varphi^{p}(x) f^{p}(x)\left(\int_{a}^{x} H(y) d_{q} y\right) d_{q} x\right)^{\frac{1}{p}} \\
& \times\left(\int_{a}^{b} \psi^{p^{\prime}}(y) g^{p^{\prime}}(y) h(y)\left(\int_{y}^{b} \varphi^{-p^{\prime}}(y) d_{q} x\right) d_{q} y\right)^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{a}^{b} H(y)\left(\int_{y}^{b} \varphi^{-p^{\prime}}(y) d_{q} x\right)^{1-p}\left(\int_{y}^{b} f(x) d_{q} x\right)^{p} d_{q} y \\
& \leq\left(\int_{a}^{b} \varphi^{p}(x) f^{p}(x)\left(\int_{a}^{x} H(y) d_{q} y\right) d_{q} x\right)^{\frac{1}{p}}
\end{aligned}
$$

hold and are equivalent.
Proof. Use Theorem 2.3 with $K(x, y)=\left\{\begin{array}{ccc}0, & \text { if } & x \leq y, \\ h(y), & \text { if } & x>y .\end{array}\right.$
It is interesting to consider the case when functions $F(x)$ and $G(y)$ of Theorem 2.3 are bounded. We then obtain the following:

Theorem 2.4. Let $K(x, y) f(x)$ and $g(y), \varphi(x)$ and $\psi(y)$ be nonnegative functions. Let

$$
F(x)=\int_{I} K(x, y) \psi^{-p}(y) d_{q} y \leq F_{1}(x)
$$

and

$$
G(y)=\int_{I} K(x, y) \varphi^{-p^{\prime}}(y) d_{q} x \leq G_{1}(y)
$$

where $1 / p+1 / p^{\prime}=1$ with $p>1$. Then the two inequalities

$$
\begin{aligned}
\int_{I} \int_{I} K(x, y) f(x) g(y) d_{q} x d_{q} y \leq & \left(\int_{I} \varphi^{p}(x) F_{1}(x) f^{p}(x) d_{q} x\right)^{\frac{1}{p}} \\
& \left(\int_{I} \psi^{p^{\prime}}(y) G_{1}(y) g^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}}
\end{aligned}
$$

and

$$
\int_{I} G_{1}^{1-p}(y) \psi^{-p}(y)\left(\int_{I} K(x, y) f(x) d_{q} x\right)^{p} d_{q} y \leq \int_{I} \varphi^{p}(x) F_{1}(x) f^{p}(x) d_{q} x
$$

hold and are equivalent.
Theorem 2.5. Let $F, G, L(f, g), M(f)$ and $N(g)$ be positive functions, and $1 / p+$ $1 / p^{\prime}=1$ with $p>1$ such that

$$
0<\int_{I} M^{p}(f(x)) F^{p}(x) d_{q} x<\infty, \quad 0<\int_{I} N^{p^{\prime}}(g(x)) G^{p^{\prime}}(x) d_{q} x<\infty
$$

then the two inequalities

$$
\begin{align*}
& \int_{I} \int_{I} \frac{F(x) G(y)}{L(f(x), g(y))} d_{q} x d_{q} y \tag{2.8}\\
& \leq C\left(\int_{I} M^{p}(f(x)) F^{p}(x) d_{q} x\right)^{\frac{1}{p}} \times\left(\int_{I} N^{p^{\prime}}(g(y)) G^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{I} N^{-p}(g(y))\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right)^{p} d_{q} y \leq C^{p} \int_{I} M^{p}(f(x)) F^{p}(x) d_{q} x \tag{2.9}
\end{equation*}
$$

where C is a constant, are equivalent.
Proof. Suppose that the inequality (2.9) is valid. Then we have

$$
\begin{aligned}
& \int_{I} \int_{I} \frac{F(x) G(y)}{L(f(x), g(y))} d_{q} x d_{q} y \\
= & \int_{I} N(g(y)) G(y)\left(N^{-1}(g(y)) \int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right) d_{q} y \\
\leq & \left(\int_{I} N^{p^{\prime}}(g(y)) G^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}}\left(\int_{I} N^{-p}(g(y))\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right)^{p} d_{q} y\right)^{\frac{1}{p}} \\
\leq & C\left(\int_{I} M^{p}(f(x)) F^{p}(x) d_{q} x\right)^{\frac{1}{p}}\left(\int_{I} N^{p^{\prime}}(g(y)) G^{p^{\prime}}(y) d_{q} y\right)^{\frac{1}{p^{\prime}}},
\end{aligned}
$$

which implies inequality 2.8 . Let us now suppose that the inequality (2.8) is valid. By setting $G(y)=N^{-p}(g(y))\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right)^{\frac{p}{p^{\prime}}}$ and applying 2.8, then we ob-
tain

$$
\begin{aligned}
& \int_{I} N^{-p}(g(y))\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right)^{p} d_{q} y \\
= & \int_{I}\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right) N^{-p}(g(y))\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right)^{\frac{p}{p^{\prime}}} d_{q} y \\
\leq & C\left(\int_{I} M^{p}(f(x)) F^{p}(x) d_{q} x\right)^{\frac{1}{p}} \\
& \times\left(\int_{I} N^{p^{\prime}}(g(y)) N^{-p p^{\prime}}(g(y))\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right)^{p} d_{q} y\right)^{\frac{1}{p^{\prime}}} \\
= & C\left(\int_{I} M^{p}(f(x)) F^{p}(x) d_{q} x\right)^{\frac{1}{p}}\left(\int_{I} N^{-p}(g(y))\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right)^{p} d_{q} y\right)^{\frac{1}{p^{\prime}}},
\end{aligned}
$$

which implies that

$$
\int_{I} N^{-p}(g(y))\left(\int_{I} \frac{F(x)}{L(f(x), g(y))} d_{q} x\right)^{p} d_{q} y \leq C^{p} \int_{I} M^{p}(f(x)) F^{p}(x) d_{q} x
$$

The proof is complete.

References

[1] M. R. S. Ammi and D. F. M. Torres, Hölder's and Hardy's two dimensional diamondalpha inequalities on time scales, An. Univ. Craiova Ser. Mat. Inform., 37(1)(2010), 1-11.
[2] H. Cauciman, Integral inequalities in q-calculus, Comput. Math. Appl., 47(2004), 281-300.
[3] A. Fitouhi, K. Brahim, Some inequalities for the q-beta and the q-gamma functions via some q-integral inequalities, Appl. Math. Comput., 204(2008), 385-394.
[4] F. H. Jackson, On a q-definite integrals, Quarterly J. Pure Appl. Math., 41(1910), 193-203.
[5] A. Tuna, S. Kutukcu, Some integral inequalities on time scales, Appl. Math. Mech. Engl. Ed., 29(1)(2008), 23-29.

