QUASI-INNER FUNCTIONS OF A GENERALIZED BEURLING'S THEOREM

Yun-Su Kim

ABSTRACT. We introduce two kinds of quasi-inner functions. Since every rationally invariant subspace for a shift operator S_K on a vector-valued Hardy space $H^2(\Omega,K)$ is generated by a quasi-inner function, we also provide relationships of quasi-inner functions by comparing rationally invariant subspaces generated by them. Furthermore, we discuss fundamental properties of quasi-inner functions and quasi-inner divisors.

1. Introduction

Beurling characterized all invariant subspaces for the shift operator on the Hardy space H^2 in terms of inner functions [2]. If φ and ϕ are inner functions such that $\varphi H^2 \subset \phi H^2$, then we have φ is divisible by ϕ [3]. In fact, the converse is also true [1].

In this paper, Ω denotes a bounded finitely connected region in the complex plane and $R(\Omega)$ denotes the algebra of rational functions with poles off $\overline{\Omega}$.

For a Hilbert space K and a shift operator S_K on a vector-valued Hardy space $H^2(\Omega,K)$, every $R(\Omega)$ -invariant (rationally invariant) subspace M for the operator S_K is characterized in terms of quasi-inner functions [4]; $M = \psi H^2(\Omega,K')$ for some quasi-inner function $\psi:\Omega\to L(K',K)$ and a Hilbert space K'. Even though a quasi-inner function is defined as an operator-valued function in [4], by the Riesz representation theorem, we also provide a definition of a scalar-valued quasi-inner function.

For quasi-inner functions $\varphi \in H^{\infty}(\Omega, L(\mathbb{C}^n))$ and $u \in H^{\infty}(\Omega)$, we discuss some relationships between operator-valued and scalar-valued quasi-inner functions (Theorem 3.4). In addition, by using a multiplication operator on a vector-valued Hardy space, we study quasi-inner functions (Corollary 3.6).

For quasi-inner functions $\theta \in H^{\infty}(\Omega)$ and $\varphi \in H^{\infty}(\Omega, K)$, we provide definitions of the following two cases;

(1) θ is divisible by φ .

Received October 14, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 47A15, 47A56, 47B37, 47B38.

 $Key\ words\ and\ phrases.$ a generalized Beurling's theorem, Hardy spaces, quasi-inner functions, rationally invariant subspaces.

1230 YUN-SU KIM

(2) φ is divisible by θ .

With these definitions, we characterize those divisibilities by comparing $R(\Omega)$ -invariant subspaces, $\theta H^2(\Omega, K)$ and $\varphi H^2(\Omega, K)$ (Theorem 4.3 and Theorem 4.4); for any quasi-inner functions $\theta \in H^{\infty}(\Omega)$ and $\varphi \in H^{\infty}(\Omega, L(K))$, the following assertions are equivalent:

- (a) $\theta | \varphi$.
- (b) $\varphi H^{\infty}(\Omega, K) \subset \theta H^{\infty}(\Omega, K)$.
- (c) $\varphi H^2(\Omega, K) \subset \theta H^2(\Omega, K)$.
- (d) There is a $\lambda > 0$ such that $\varphi(z)\varphi(z)^* \leq \lambda^2 |\theta(z)|^2 I_K$ for any $z \in \Omega$.

2. Preliminaries and notation

In this paper, \mathbb{C} , \overline{M} , and L(H) denote the set of complex numbers, the (norm) closure of a set M, and the set of bounded linear operators from H to H where H is a Hilbert space, respectively.

2.1. Inner functions

Let **D** be the open unit disc. We denote by H^{∞} the Banach space of all bounded analytic functions $\phi: \mathbf{D} \to \mathbb{C}$ with the norm $\|\phi\|_{\infty} = \sup\{|\phi(z)| : z \in \mathbf{D}\}.$

Let θ and θ' be two functions in H^{∞} . We say that θ divides $\theta'(\text{or }\theta|\theta')$ if θ' can be written as $\theta' = \theta \cdot \phi$ for some $\phi \in H^{\infty}$. We will use the notation $\theta \equiv \theta'$ if $\theta|\theta'$ and $\theta'|\theta$.

Recall that a function $u \in H^{\infty}$ is *inner* if $|u(e^{it})|=1$ almost everywhere on $\partial \mathbf{D}$. By Beurling's theorem on invariant subspaces of the Hardy spaces, for any inner function $\theta \in H^{\infty}$, we have that θH^2 is an invariant subspace for the shift operator $S: H^2 \to H^2$ defined by (Sf)(z) = zf(z) for $f \in H^2$.

2.2. Hardy spaces

We refer to [5] for basic facts about Hardy space, and recall here the basic definitions. Let Ω be a bounded finitely connected region in the complex plane.

Definition 2.1. The space $H^2(\Omega)$ is defined to be the space of analytic functions f on Ω such that the subharmonic function $|f|^2$ has a harmonic majorant on Ω . For a fixed $z_0 \in \Omega$, there is a norm on $H^2(\Omega)$ defined by

$$||f|| = \inf\{u(z_0)^{1/2} : u \text{ is a harmonic majorant of } |f|^2\}.$$

Let m be the harmonic measure for the point z_0 , let $L^2(\partial\Omega)$ be the L^2 -space of complex valued functions on the boundary of Ω defined with respect to m, and let $H^2(\partial\Omega)$ be the set of functions f in $L^2(\partial\Omega)$ such that $\int_{\partial\Omega} f(z)g(z)dz = 0$ for every g that is analytic in a neighborhood of the closure of Ω . If f is in $H^2(\Omega)$, then there is a function f^* in $H^2(\partial\Omega)$ such that f(z) approaches $f^*(\lambda_0)$ as z approaches λ_0 nontangentially, for almost every λ_0 relative to m. The map $f \to f^*$ is an isometry from $H^2(\Omega)$ onto $H^2(\partial\Omega)$.

A function f defined on Ω is in $H^{\infty}(\Omega)$ if it is holomorphic and bounded. Then, $H^{\infty}(\Omega)$ is a closed subspace of $L^{\infty}(\Omega)$ and it is a Banach algebra if endowed with the supremum norm. Finally, the mapping $f \to f^*$ is an isometry of $H^{\infty}(\Omega)$ onto a week*-closed subalgebra of $L^{\infty}(\partial\Omega)$.

Definition 2.2. If K is a Hilbert space, then $H^2(\Omega,K)$ is defined to be the space of analytic functions $f:\Omega\to K$ such that the subharmonic function $\|f\|^2$ is majorized by a harmonic function ν . Fix a point z_0 in Ω and define a norm on $H^2(\Omega,K)$ by

$$||f|| = \inf\{\nu(z_0)^{1/2} : \nu \text{ is a harmonic majorant of } ||f||^2\}.$$

We will work on this vector-valued Hardy space $H^2(\Omega,K)$. Define a shift operator $S_K: H^2(\Omega,K) \to H^2(\Omega,K)$ by

$$(S_K f)(z) = z f(z).$$

3. Quasi-inner functions

Let $R(\Omega)$ denote the algebra of rational functions with poles off $\overline{\Omega}$, and T be an operator in L(H) such that $\sigma(T) \subset \overline{\Omega}$. Then a closed subspace M is said to be $R(\Omega)$ -invariant (rationally invariant) for the operator T, if it is invariant under u(T) for any function $u \in R(\Omega)$.

To characterize every $R(\Omega)$ -invariant subspace for the shift operator S_K , quasi-inner function was defined in [4].

Definition 3.1. Let K and K' be Hilbert spaces and let $H^{\infty}(\Omega, L(K, K'))$ be the Banach space of all analytic functions $\Phi: \Omega \to L(K, K')$ with the supremum norm. For $\varphi \in H^{\infty}(\Omega, L(K, K'))$, we will say that φ is quasi-inner if there exists a constant c > 0 such that

$$\|\varphi(z)k\| \ge c \|k\|$$

for every $k \in K$ and almost every $z \in \partial \Omega$.

Even though a quasi-inner function is defined as an operator-valued function, by the Riesz representation theorem, we can identify $L(\mathbb{C})$ with \mathbb{C} . Thus we have the following definition of a scalar-valued quasi-inner function:

Definition 3.2. For $\theta \in H^{\infty}(\Omega)$, we will say that θ is *quasi-inner* if there exists a constant c > 0 such that

$$|\theta(z)| \ge c$$

for almost every $z \in \partial \Omega$.

Proposition 3.3. Let K and K' be Hilbert spaces with dim $K = \dim K' = n(< \infty)$.

If $\varphi \in H^{\infty}(\Omega, L(K, K'))$ is a quasi-inner function, then $\varphi(z)$ is invertible a.e. on $\partial\Omega$.

Proof. Since $\varphi \in H^{\infty}(\Omega, L(K, K'))$ is quasi-inner, there is a set $A \subset \partial \Omega$ with m(A) = 0 such that the range of $\varphi(z_0)$ is closed, and $\varphi(z_0)$ is one-to-one for any $z_0 \in \partial \Omega \setminus A$.

Thus, K and the range of $\varphi(z_0)$ have the same dimension.

Since dim $K = \dim K'$, we conclude that the range of $\varphi(z_0)$ is K'. Thus $\varphi(z)$ is invertible for $z \in \partial \Omega \backslash A$.

Theorem 3.4. (a) If $\varphi \in H^{\infty}(\Omega, L(\mathbb{C}^n))$ and $u \in H^{\infty}(\Omega)$ are quasi-inner functions such that

$$\varphi(z)\psi(z) = u(z)I_{\mathbb{C}^n},$$

where $\psi \in H^{\infty}(\Omega, L(\mathbb{C}^n))$, then ψ is also quasi-inner.

(b) Conversely, if $\varphi \in H^{\infty}(\Omega, L(\mathbb{C}^n))$ and $\psi \in H^{\infty}(\Omega, L(\mathbb{C}^n))$ are quasiinner functions such that

$$\varphi(z)\psi(z) = u(z)I_{\mathbb{C}^n}$$
 or $\psi(z)\varphi(z) = u(z)I_{\mathbb{C}^n}$

for some $u \in H^{\infty}(\Omega)(u \neq 0)$, then u is quasi-inner.

Proof. (a) Since φ and u are quasi-inner functions, there are constants $m_1(>0)$ and $c_i(>0)(i=1,2)$ such that

- (i) $m_1 \leq |u(z)|$ a.e. on $\partial \Omega$, and
- (ii) for $h \in \mathbb{C}^n$, $c_1 ||h|| \le ||\varphi(z)h|| \le c_2 ||h||$ a.e. on $\partial \Omega$.

Since $\varphi(z)\psi(z) = u(z)I_{\mathbb{C}^n}$ for $h \in \mathbb{C}^n$, $m_1 ||h|| \le |u(z)| ||h|| = ||\varphi(z)\psi(z)h|| \le c_2 ||\psi(z)h||$ a.e. on $\partial\Omega$. Thus, for $h \in \mathbb{C}^n$,

(3.1)
$$\frac{m_1}{c_2} \|h\| \le \|\psi(z)h\|$$

a.e. on $\partial\Omega$.

From (3.1), we conclude that ψ is also quasi-inner.

(b) Since $\varphi \in H^{\infty}(\Omega, L(\mathbb{C}^n))$ and $\psi \in H^{\infty}(\Omega, L(\mathbb{C}^n))$ are quasi-inner functions, there exist $m_1(>0)$ and $m_2(>0)$ such that, for $h \in \mathbb{C}^n$, $m_1 ||h|| \le ||\varphi(z)h||$ a.e. on $\partial\Omega$ and $m_2 ||h|| \le ||\psi(z)h||$ a.e. on $\partial\Omega$. Then

$$\|\varphi(z)\psi(z)h\| \ge m_1 \|\psi(z)h\| \ge m_1 m_2 \|h\|$$

and so $\|\varphi(z)\psi(z)\| \ge m_1m_2$ a.e. on $\partial\Omega$. Since $|u(z)| = \|\varphi(z)\psi(z)\|$, it is proven.

Furthermore, by using these quasi-inner functions, we have a generalization of Beurling's theorem as following:

Theorem A (Theorem 1.5 in [4]). Let K be a Hilbert space. Then a closed subspace M of $H^2(\Omega, K)$ is $R(\Omega)$ -invariant for S_K if and only if there is a Hilbert space K' and a quasi-inner function $\varphi : \Omega \to L(K', K)$ such that $M = \varphi H^2(\Omega, K')$.

Since we have two kinds of quasi-inner functions, we have two kinds of $R(\Omega)$ -invariant subspaces for S_K . One of them is generated by a scalar-valued quasi-inner function, and the other one is generated by an operator-valued

quasi-inner function. We will also compare these two $R(\Omega)$ -invariant subspaces for S_K in Theorem 4.3.

Let K_1 and K_2 be separable Hilbert spaces. To discuss quasi-inner functions, we define a multiplication operator for a given function $\psi \in H^{\infty}(\Omega, L(K_1, K_2))$. A multiplication operator $M_{\psi}: H^2(\Omega, K_1) \to H^2(\Omega, K_2)$ is defined by

$$M_{\psi}(g)(z) = \psi(z)g(z)$$

for all g in $H^2(\Omega, K_1)$. We can easily check that $||M_{\psi}|| = ||\psi||_{\infty}$. Recall an important property of this multiplication operator:

Proposition 3.5 ([4]). Let K_1 and K_2 be separable Hilbert spaces. If $T: H^2(\Omega, K_1) \to H^2(\Omega, K_2)$ is a bounded linear operator such that $TS_{K_1} = S_{K_2}T$, then there is a function $\psi \in H^\infty(\Omega, L(K_1, K_2))$ such that $T = M_{\psi}$.

Theorem 3.6. Let $\varphi \in H^{\infty}(\Omega, L(K_1, K_2))$.

- (a) If φ is quasi-inner, then M_{φ} is one-to-one and has closed range.
- (b) If $M_{\varphi}: H^2(\Omega, K_1) \to H^2(\Omega, K_2)$ is invertible, then φ is quasi-inner.

Proof. (a) By Theorem A, $M_{\varphi}H^2(\Omega, K_1) = \varphi H^2(\Omega, K_1)$ is closed.

Since $\varphi(z)$ is a bounded below operator a.e. on $\partial\Omega$, $f \in \ker M_{\varphi} = \{f \in H^2(\Omega, K_1) : \varphi(z)f(z) = 0(z \in \Omega)\}$ if and only if $f^* \equiv 0$ in $H^2(\partial\Omega, K_1)$ if and only if $f \equiv 0$.

(b) Since $\varphi H^2(\Omega, K_1)$ is $R(\Omega)$ -invariant for S_{K_2} , by Theorem A,

$$\varphi H^2(\Omega, K_1) = \varphi_1 H^2(\Omega, K_0)$$

for a Hilbert space K_0 and a quasi-inner function $\varphi_1:\Omega\to L(K_0,K_2)$.

Define a linear operator $T: H^2(\Omega, K_1) \to H^2(\Omega, K_0)$ as follows. For $f \in H^2(\Omega, K_1)$, Tf = g such that $\varphi f = \varphi_1 g$. Since φ_1 is a quasi-inner function, by (a), T is well-defined and T is bounded. Since $S_{K_0}T = TS_{K_1}$, by Proposition 3.5, $T = M_{\varphi_2}$ for a function $\varphi_2 \in H^{\infty}(\Omega, L(K_1, K_2))$. It follows that

(3.2)
$$\varphi(z) = \varphi_1(z)\varphi_2(z)$$

for any $z \in \Omega$.

Since M_{φ} is onto, so is M_{φ_1} . By (a), M_{φ_1} is one-to-one, and so M_{φ_1} is invertible. Since M_{φ} and M_{φ_1} are invertible, so is $T=M_{\varphi_2}$. Note that the invertibility of M_{φ} is equivalent to the invertibility of $\varphi(z)$ for any z in Ω . It follows that $\varphi_2(z)$ is bounded below for any z in Ω .

Since φ_1 is quasi-inner, $\varphi_1(z)$ is also bounded below a.e. on $\partial\Omega$.

Therefore, by equation (3.2), for any $a \in K_1$, there is a constant c > 0 such that

$$\|\varphi(z)a\| \ge c \|a\|$$

a.e. on $\partial\Omega$.

4. Quasi-inner divisors

Let K be a Hilbert space. The time has come to consider divisibilities between a function in $H^{\infty}(\Omega)$ and a function in $H^{\infty}(\Omega, L(K))$.

Definition 4.1. If $\theta \in H^{\infty}(\Omega)$ and $\varphi \in H^{\infty}(\Omega, L(K))$, then we say that θ divides φ (denoted $\theta|\varphi$) if φ can be written as

$$\varphi = \theta \cdot \phi'$$

for some $\phi' \in H^{\infty}(\Omega, L(K))$.

Definition 4.2. If $\theta \in H^{\infty}(\Omega)$ and $\varphi \in H^{\infty}(\Omega, L(K))$, then we say that φ divides θ (denoted $\varphi|\theta$) if there exists $\psi \in H^{\infty}(\Omega, L(K))$ satisfying the following relations;

$$\varphi(z)\psi(z) = \theta(z)I_K$$

and

$$\psi(z)\varphi(z) = \theta(z)I_K$$

for $z \in \Omega$.

Theorem 4.3. For any quasi-inner functions $\theta \in H^{\infty}(\Omega)$ and $\varphi \in H^{\infty}(\Omega, L(K))$, the following assertions are equivalent:

- (a) $\theta | \varphi$.
- (b) $\varphi H^{\infty}(\Omega, K) \subset \theta H^{\infty}(\Omega, K)$.
- (c) $\varphi H^2(\Omega, K) \subset \theta H^2(\Omega, K)$.
- (d) There is a $\lambda > 0$ such that $\varphi(z)\varphi(z)^* \leq \lambda^2 |\theta(z)|^2 I_K$ for any $z \in \Omega$, where I_K is the identity function on K.

Proof. If $\theta | \varphi, \varphi = \theta \varphi_1$ for some $\varphi_1 \in H^{\infty}(\Omega, L(K))$. Then

$$\varphi H^{\infty}(\Omega, K) = \theta \varphi_1 H^{\infty}(\Omega, K) \subset \theta H^{\infty}(\Omega, K).$$

Thus (a) implies (b).

Conversely, suppose that $\varphi H^{\infty}(\Omega, K) \subset \theta H^{\infty}(\Omega, K)$. Then

(4.1)
$$\varphi^* H^{\infty}(\partial \Omega, K) \subset \theta^* H^{\infty}(\partial \Omega, K).$$

Let $\{b_i : i \in I\}$ be an orthonormal basis of K and $g_i \in H^{\infty}(\partial\Omega, K)$ defined by $g_i(z) = b_i (i \in I)$. By (4.1), there is $f_i \in H^{\infty}(\partial\Omega, K)$ such that $\varphi^*g_i = \theta^*f_i$, i.e., for $i \in I$,

$$\varphi^*(z)b_i = \theta^*(z)f_i(z).$$

Define $\varphi_1: \partial\Omega \to L(K)$ by for $i \in I$,

For $i \in I$, define $\varphi_i \in H^{\infty}(\partial\Omega, L(K))$ by $\varphi_i(z)b_j = \delta_{ij}f_i(z)(j \in I)$, where $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise.} \end{cases}$ Then

$$\varphi_1 = \sum_{i \in I} \varphi_i.$$

By (4.2) and (4.3), for each $i \in I$, $\varphi^*(z)b_i = \theta^*(z)\varphi_1(z)b_i$, and so

$$\varphi^* = \theta^* \varphi_1.$$

To prove that (b) implies (a), we have to show that $\varphi_1 \in H^{\infty}(\partial\Omega, L(K))$. Since $\theta \in H^{\infty}$ is a quasi-inner function, there is c > 0 such that $|\theta(z)| \geq c$ for every $z \in A \subset \partial\Omega$ with $m(\partial\Omega \setminus A) = 0$. For any $x \in K$ with ||x|| = 1 and $z \in A$,

(4.5)
$$\|\varphi_1(z)x\| = \frac{\|\varphi^*(z)x\|}{|\theta^*(z)|} \le \frac{\|\varphi\|_{\infty}}{c}.$$

From (4.4) and (4.5), we conclude that

$$\varphi_1 \in H^{\infty}(\partial\Omega, L(K)).$$

By the same way as above, (a) \Leftrightarrow (c) is proven. We begin to prove (a) \Leftrightarrow (d). If $\theta | \varphi, \varphi = \theta \varphi_1$ for some $\varphi_1 \in H^{\infty}(\Omega, L(K))$. Then

$$\varphi(z)\varphi(z)^* = \theta(z)\varphi_1(z)\varphi_1(z)^* \overline{\theta(z)} \le \|\varphi_1\|_{\infty}^2 |\theta(z)|^2 I_K.$$

Let $\lambda = \|\varphi_1\|_{\infty}$. Since φ is quasi-inner, $\varphi \neq 0$ and so $\lambda > 0$. Thus (a) implies (d).

Conversely, suppose that for any $z \in \Omega$,

(4.6)
$$\varphi(z)\varphi(z)^* \le \lambda^2 |\theta(z)|^2 I_K$$

for some $\lambda > 0$. For each $z \in \Omega$, we will define a linear mapping $F_z \in L(K)$. Let

$$A = \{ z \in \Omega : \theta(z) = 0 \}$$

and

$$B = \{ z \in \Omega : \theta(z) \neq 0 \}.$$

If $z \in A$, then let $F_z = 0$. If $z \in B$, then range of $\overline{\theta(z)}I_K$ is K and so we can define a linear mapping F_z from K to range of $\varphi(z)^*$ by

$$F_z(\overline{\theta(z)}f) = \varphi(z)^*f$$

for $f \in K$

Since $\left\|F_z(\overline{\theta(z)}f)\right\|^2 = \left\|\varphi(z)^*f\right\|^2 = (\varphi(z)\varphi(z)^*f, f) \leq \lambda^2(|\theta(z)|^2f, f) = \lambda^2 \|\theta(z)f\|^2$, that is,

(4.7)
$$\left\| F_z(\overline{\theta(z)}f) \right\| \le \lambda \, \|\theta(z)f\|,$$

 F_z is well-defined for $z \in B$. By definition of F_z , if $z \in B$,

(4.8)
$$\theta(z)F_z^* = \varphi(z).$$

If $z \in A$, by (4.6) $\|\varphi(z)\| = 0$ and so $\varphi(z) = 0$ ($z \in A$). Thus $\theta(z)F_z^* = \varphi(z)$ for any $z \in \Omega$.

Define a function $F: \Omega \to L(K)$ by

$$F(z) = F_z^*$$
.

Then by equation (4.8),

$$\varphi(z) = \theta(z)F(z)$$

for $z \in \Omega$. To finish this proof, we have to prove that $F \in H^{\infty}(\Omega, L(K))$. From inequality (4.7), we have

$$(4.9) $||F||_{\infty} \le \lambda$$$

and so $F = \frac{\varphi}{\theta}$ has only removable singularities in Ω . Thus F can be defined on $\{z \in \Omega : \theta(z) = 0\}$ so that F is analytic and

$$\varphi = \theta F$$
.

From (4.9),
$$F \in H^{\infty}(\Omega, L(K))$$
 which proves (d) \Rightarrow (a).

We have another result similar to Theorem 4.3.

Theorem 4.4. For any quasi-inner functions $\theta \in H^{\infty}(\Omega)$ and $\varphi \in H^{\infty}(\Omega, L(K))$, the following assertions are equivalent:

- (a) $\varphi | \theta$.
- (b) $\theta H^{\infty}(\Omega, K) \subset \varphi H^{\infty}(\Omega, K)$.
- (c) $\theta H^2(\Omega, K) \subset \varphi H^2(\Omega, K)$.
- (d) There is a $\lambda > 0$ such that $|\theta(z)|^2 I_K \leq \lambda^2 \varphi(z) \varphi(z)^*$ for any $z \in \Omega$.

Proof. This theorem is proven by the same way as Theorem 4.3. \Box

References

- [1] H. Bercovici, Operator Theory and Arithmetic in H^{∞} , Mathematical Surveys and Monographs, 26. American Mathematical Society, Providence, RI, 1988.
- [2] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 17 pp.
- [3] Paul R. Halmos, A Hilbert Space Problem Book, van Nostrand-Reinhold, Princeton, New Jersey, 1967.
- [4] Y. S. Kim, Linear algebraic properties for Jordan models of C₀-operators relative to multiply connected domains, J. Operator Theory **57** (2007), no. 2, 375–389.
- [5] W. Rudin, Analytic functions of class H_p , Trans. Amer. Math. Soc. 78 (1955), 46–66.
- [6] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
- [7] A. Zucchi, Operators of class C₀ with spectra in multiply connected regions, Mem. Amer. Math. Soc. 127 (1997), no. 607, viii+52 pp.

DEPARTMENT OF MATHEMATICS

THE UNIVERSITY OF TOLEDO

2801 W. BANCROFT ST. TOLEDO, OH 43606, U. S. A.

 $E ext{-}mail\ address: Yun-Su.Kim@utoledo.edu}$