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QUASI-INNER FUNCTIONS OF A GENERALIZED
BEURLING’S THEOREM

Yun-Su Kim

Abstract. We introduce two kinds of quasi-inner functions. Since every
rationally invariant subspace for a shift operator SK on a vector-valued
Hardy space H2(Ω, K) is generated by a quasi-inner function, we also pro-
vide relationships of quasi-inner functions by comparing rationally invari-
ant subspaces generated by them. Furthermore, we discuss fundamental
properties of quasi-inner functions and quasi-inner divisors.

1. Introduction

Beurling characterized all invariant subspaces for the shift operator on the
Hardy space H2 in terms of inner functions [2]. If ϕ and φ are inner functions
such that ϕH2 ⊂ φH2, then we have ϕ is divisible by φ [3]. In fact, the converse
is also true [1].

In this paper, Ω denotes a bounded finitely connected region in the complex
plane and R(Ω) denotes the algebra of rational functions with poles off Ω.

For a Hilbert space K and a shift operator SK on a vector-valued Hardy
space H2(Ω,K), every R(Ω)-invariant (rationally invariant) subspace M for
the operator SK is characterized in terms of quasi-inner functions [4]; M =
ψH2(Ω,K ′) for some quasi-inner function ψ : Ω → L(K ′,K) and a Hilbert
space K ′. Even though a quasi-inner function is defined as an operator-valued
function in [4], by the Riesz representation theorem, we also provide a definition
of a scalar-valued quasi-inner function.

For quasi-inner functions ϕ ∈ H∞(Ω, L(Cn)) and u ∈ H∞(Ω), we discuss
some relationships between operator-valued and scalar-valued quasi-inner func-
tions (Theorem 3.4). In addition, by using a multiplication operator on a
vector-valued Hardy space, we study quasi-inner functions (Corollary 3.6).

For quasi-inner functions θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω,K), we provide defi-
nitions of the following two cases;

(1) θ is divisible by ϕ.
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(2) ϕ is divisible by θ.
With these definitions, we characterize those divisibilities by comparing

R(Ω)-invariant subspaces, θH2(Ω,K) and ϕH2(Ω,K) (Theorem 4.3 and The-
orem 4.4); for any quasi-inner functions θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω, L(K)),
the following assertions are equivalent:

(a) θ|ϕ.
(b) ϕH∞(Ω,K) ⊂ θH∞(Ω,K).
(c) ϕH2(Ω,K) ⊂ θH2(Ω,K).
(d) There is a λ > 0 such that ϕ(z)ϕ(z)∗ ≤ λ2|θ(z)|2IK for any z ∈ Ω.

2. Preliminaries and notation

In this paper, C, M , and L(H) denote the set of complex numbers, the
(norm) closure of a set M , and the set of bounded linear operators from H to
H where H is a Hilbert space, respectively.

2.1. Inner functions

Let D be the open unit disc. We denote by H∞ the Banach space of all
bounded analytic functions φ : D → C with the norm ‖φ‖∞ = sup{|φ(z)| : z ∈
D}.

Let θ and θ′ be two functions in H∞. We say that θ divides θ′(or θ|θ′) if θ′

can be written as θ′ = θ · φ for some φ ∈ H∞. We will use the notation θ ≡ θ′

if θ|θ′ and θ′|θ.
Recall that a function u ∈ H∞ is inner if |u(eit)|= 1 almost everywhere on

∂D. By Beurling’s theorem on invariant subspaces of the Hardy spaces, for
any inner function θ ∈ H∞, we have that θH2 is an invariant subspace for the
shift operator S : H2 → H2 defined by (Sf)(z) = zf(z) for f ∈ H2.

2.2. Hardy spaces

We refer to [5] for basic facts about Hardy space, and recall here the basic
definitions. Let Ω be a bounded finitely connected region in the complex plane.

Definition 2.1. The space H2(Ω) is defined to be the space of analytic func-
tions f on Ω such that the subharmonic function |f |2 has a harmonic majorant
on Ω. For a fixed z0 ∈ Ω, there is a norm on H2(Ω) defined by

‖f‖ = inf{u(z0)1/2 : u is a harmonic majorant of |f |2}.
Let m be the harmonic measure for the point z0, let L2(∂Ω) be the L2-space

of complex valued functions on the boundary of Ω defined with respect to m,
and let H2(∂Ω) be the set of functions f in L2(∂Ω) such that

∫
∂Ω
f(z)g(z)dz

= 0 for every g that is analytic in a neighborhood of the closure of Ω. If f
is in H2(Ω), then there is a function f∗ in H2(∂Ω) such that f(z) approaches
f∗(λ0) as z approaches λ0 nontangentially, for almost every λ0 relative to m.
The map f → f∗ is an isometry from H2(Ω) onto H2(∂Ω).
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A function f defined on Ω is in H∞(Ω) if it is holomorphic and bounded.
Then, H∞(Ω) is a closed subspace of L∞(Ω) and it is a Banach algebra if
endowed with the supremum norm. Finally, the mapping f → f∗ is an isometry
of H∞(Ω) onto a week∗-closed subalgebra of L∞(∂Ω).

Definition 2.2. If K is a Hilbert space, then H2(Ω,K) is defined to be the
space of analytic functions f : Ω → K such that the subharmonic function
‖f‖2 is majorized by a harmonic function ν. Fix a point z0 in Ω and define a
norm on H2(Ω,K) by

‖f‖ = inf{ν(z0)1/2 : ν is a harmonic majorant of ‖f‖2}.
We will work on this vector-valued Hardy space H2(Ω,K). Define a shift

operator SK : H2(Ω,K) → H2(Ω,K) by

(SKf)(z) = zf(z).

3. Quasi-inner functions

Let R(Ω) denote the algebra of rational functions with poles off Ω, and T be
an operator in L(H) such that σ(T ) ⊂ Ω. Then a closed subspace M is said to
be R(Ω)-invariant (rationally invariant) for the operator T , if it is invariant
under u(T ) for any function u ∈ R(Ω).

To characterize every R(Ω)-invariant subspace for the shift operator SK ,
quasi-inner function was defined in [4].

Definition 3.1. Let K and K ′ be Hilbert spaces and let H∞(Ω, L(K,K ′))
be the Banach space of all analytic functions Φ : Ω → L(K,K ′) with the
supremum norm. For ϕ ∈ H∞(Ω, L(K,K ′)), we will say that ϕ is quasi-inner
if there exists a constant c > 0 such that

‖ϕ(z)k‖ ≥ c ‖k‖
for every k ∈ K and almost every z ∈ ∂Ω.

Even though a quasi-inner function is defined as an operator-valued function,
by the Riesz representation theorem, we can identify L(C) with C. Thus we
have the following definition of a scalar-valued quasi-inner function:

Definition 3.2. For θ ∈ H∞(Ω), we will say that θ is quasi-inner if there
exists a constant c > 0 such that

|θ(z)| ≥ c

for almost every z ∈ ∂Ω.

Proposition 3.3. Let K and K ′ be Hilbert spaces with dimK = dimK ′ =
n(<∞).

If ϕ ∈ H∞(Ω, L(K,K ′)) is a quasi-inner function, then ϕ(z) is invertible
a.e. on ∂Ω.
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Proof. Since ϕ ∈ H∞(Ω, L(K,K ′)) is quasi-inner, there is a set A ⊂ ∂Ω with
m(A) = 0 such that the range of ϕ(z0) is closed, and ϕ(z0) is one-to-one for
any z0 ∈ ∂Ω \A.

Thus, K and the range of ϕ(z0) have the same dimension.
Since dim K = dim K ′, we conclude that the range of ϕ(z0) is K ′. Thus

ϕ(z) is invertible for z ∈ ∂Ω\A. ¤

Theorem 3.4. (a) If ϕ ∈ H∞(Ω, L(Cn)) and u ∈ H∞(Ω) are quasi-inner
functions such that

ϕ(z)ψ(z) = u(z)ICn ,

where ψ ∈ H∞(Ω, L(Cn)), then ψ is also quasi-inner.
(b) Conversely, if ϕ ∈ H∞(Ω, L(Cn)) and ψ ∈ H∞(Ω, L(Cn)) are quasi-

inner functions such that

ϕ(z)ψ(z) = u(z)ICn or ψ(z)ϕ(z) = u(z)ICn

for some u ∈ H∞(Ω)(u 6= 0), then u is quasi-inner.

Proof. (a) Since ϕ and u are quasi-inner functions, there are constants m1(> 0)
and ci(> 0)(i = 1, 2) such that

(i) m1 ≤ |u(z)| a.e. on ∂Ω, and
(ii) for h ∈ Cn, c1 ‖h‖ ≤ ‖ϕ(z)h‖ ≤ c2 ‖h‖ a.e. on ∂Ω.
Since ϕ(z)ψ(z) = u(z)ICn for h ∈ Cn, m1 ‖h‖ ≤ |u(z)| ‖h‖ =‖ϕ(z)ψ(z)h‖≤

c2 ‖ψ(z)h‖ a.e. on ∂Ω. Thus, for h ∈ Cn,
(3.1)

m1

c2
‖h‖ ≤ ‖ψ(z)h‖

a.e. on ∂Ω.
From (3.1), we conclude that ψ is also quasi-inner.
(b) Since ϕ ∈ H∞(Ω, L(Cn)) and ψ ∈ H∞(Ω, L(Cn)) are quasi-inner func-

tions, there exist m1(> 0) and m2(> 0) such that, for h ∈ Cn, m1 ‖h‖ ≤
‖ϕ(z)h‖ a.e. on ∂Ω and m2 ‖h‖ ≤ ‖ψ(z)h‖ a.e. on ∂Ω. Then

‖ϕ(z)ψ(z)h‖ ≥ m1 ‖ψ(z)h‖ ≥ m1m2 ‖h‖
and so ‖ϕ(z)ψ(z)‖ ≥ m1m2 a.e. on ∂Ω. Since |u(z)|= ‖ϕ(z)ψ(z)‖, it is proven.

¤

Furthermore, by using these quasi-inner functions, we have a generalization
of Beurling’s theorem as following:

Theorem A (Theorem 1.5 in [4]). Let K be a Hilbert space. Then a closed
subspace M of H2(Ω,K) is R(Ω)-invariant for SK if and only if there is a
Hilbert space K ′ and a quasi-inner function ϕ : Ω → L(K ′,K) such that M =
ϕH2(Ω,K ′).

Since we have two kinds of quasi-inner functions, we have two kinds of
R(Ω)-invariant subspaces for SK . One of them is generated by a scalar-valued
quasi-inner function, and the other one is generated by an operator-valued
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quasi-inner function. We will also compare these two R(Ω)-invariant subspaces
for SK in Theorem 4.3.

LetK1 andK2 be separable Hilbert spaces. To discuss quasi-inner functions,
we define a multiplication operator for a given function ψ ∈ H∞(Ω, L(K1,K2)).
A multiplication operator Mψ : H2(Ω,K1) → H2(Ω,K2) is defined by

Mψ(g)(z) = ψ(z)g(z)

for all g in H2(Ω,K1). We can easily check that ‖Mψ‖ = ‖ψ‖∞.
Recall an important property of this multiplication operator:

Proposition 3.5 ([4]). Let K1 and K2 be separable Hilbert spaces. If T :
H2(Ω,K1) → H2(Ω,K2) is a bounded linear operator such that TSK1 = SK2T ,
then there is a function ψ ∈H∞(Ω, L(K1,K2)) such that T = Mψ.

Theorem 3.6. Let ϕ ∈ H∞(Ω, L(K1,K2)).
(a) If ϕ is quasi-inner, then Mϕ is one-to-one and has closed range.
(b) If Mϕ : H2(Ω,K1) → H2(Ω,K2) is invertible, then ϕ is quasi-inner.

Proof. (a) By Theorem A, MϕH
2(Ω,K1) = ϕH2(Ω,K1) is closed.

Since ϕ(z) is a bounded below operator a.e. on ∂Ω, f ∈ kerMϕ = {f ∈
H2(Ω,K1) : ϕ(z)f(z) = 0(z ∈ Ω)} if and only if f∗ ≡ 0 in H2(∂Ω,K1) if and
only if f ≡ 0.

(b) Since ϕH2(Ω,K1) is R(Ω)-invariant for SK2 , by Theorem A,

ϕH2(Ω,K1) = ϕ1H
2(Ω,K0)

for a Hilbert space K0 and a quasi-inner function ϕ1 : Ω → L(K0,K2).
Define a linear operator T : H2(Ω,K1) → H2(Ω,K0) as follows. For

f ∈ H2(Ω,K1), Tf = g such that ϕf = ϕ1g. Since ϕ1 is a quasi-inner
function, by (a), T is well-defined and T is bounded. Since SK0T = TSK1 ,
by Proposition 3.5, T = Mϕ2 for a function ϕ2 ∈H∞(Ω, L(K1,K2)). It follows
that

(3.2) ϕ(z) = ϕ1(z)ϕ2(z)

for any z ∈ Ω.
Since Mϕ is onto, so is Mϕ1 . By (a), Mϕ1 is one-to-one, and so Mϕ1 is

invertible. Since Mϕ and Mϕ1 are invertible, so is T = Mϕ2 . Note that the
invertibility of Mϕ is equivalent to the invertibility of ϕ(z) for any z in Ω. It
follows that ϕ2(z) is bounded below for any z in Ω.

Since ϕ1 is quasi-inner, ϕ1(z) is also bounded below a.e. on ∂Ω.
Therefore, by equation (3.2), for any a ∈ K1, there is a constant c > 0 such

that

‖ϕ(z)a‖ ≥ c ‖a‖
a.e. on ∂Ω. ¤
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4. Quasi-inner divisors

Let K be a Hilbert space. The time has come to consider divisibilities
between a function in H∞(Ω) and a function in H∞(Ω, L(K)).

Definition 4.1. If θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω, L(K)), then we say that θ
divides ϕ (denoted θ|ϕ) if ϕ can be written as

ϕ = θ · φ′
for some φ′ ∈ H∞(Ω, L(K)).

Definition 4.2. If θ ∈ H∞(Ω) and ϕ ∈ H∞(Ω, L(K)), then we say that ϕ
divides θ (denoted ϕ|θ) if there exists ψ ∈ H∞(Ω, L(K)) satisfying the following
relations;

ϕ(z)ψ(z) = θ(z)IK
and

ψ(z)ϕ(z) = θ(z)IK
for z ∈ Ω.

Theorem 4.3. For any quasi-inner functions θ∈H∞(Ω) and ϕ∈H∞(Ω,L(K)),
the following assertions are equivalent:

(a) θ|ϕ.
(b) ϕH∞(Ω,K) ⊂ θH∞(Ω,K).
(c) ϕH2(Ω,K) ⊂ θH2(Ω,K).
(d) There is a λ > 0 such that ϕ(z)ϕ(z)∗ ≤ λ2|θ(z)|2IK for any z ∈ Ω,

where IK is the identity function on K.

Proof. If θ|ϕ, ϕ = θϕ1 for some ϕ1 ∈ H∞(Ω, L(K)). Then

ϕH∞(Ω,K) = θϕ1H
∞(Ω,K) ⊂ θH∞(Ω,K).

Thus (a) implies (b).
Conversely, suppose that ϕH∞(Ω,K) ⊂ θH∞(Ω,K). Then

(4.1) ϕ∗H∞(∂Ω,K) ⊂ θ∗H∞(∂Ω,K).

Let {bi : i ∈ I} be an orthonormal basis of K and gi ∈ H∞(∂Ω,K) defined
by gi(z) = bi(i ∈ I). By (4.1), there is fi ∈ H∞(∂Ω,K) such that ϕ∗gi = θ∗fi,
i.e., for i ∈ I,
(4.2) ϕ∗(z)bi = θ∗(z)fi(z).

Define ϕ1 : ∂Ω → L(K) by for i ∈ I,
(4.3) ϕ1(z)bi = fi(z).

For i ∈ I, define ϕi ∈ H∞(∂Ω, L(K)) by ϕi(z)bj = δijfi(z)(j ∈ I), where

δij =
{

1 if i = j
0 otherwise. Then

(4.4) ϕ1 =
∑

i∈I
ϕi.
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By (4.2) and (4.3), for each i ∈ I, ϕ∗(z)bi = θ∗(z)ϕ1(z)bi, and so

ϕ∗ = θ∗ϕ1.

To prove that (b) implies (a), we have to show that ϕ1 ∈ H∞(∂Ω, L(K)).
Since θ ∈ H∞ is a quasi-inner function, there is c > 0 such that |θ(z)| ≥ c for
every z ∈ A ⊂ ∂Ω with m(∂Ω \ A) = 0. For any x ∈ K with ‖x‖ = 1 and
z ∈ A,

(4.5) ‖ϕ1(z)x‖ =
‖ϕ∗(z)x‖
|θ∗(z)| ≤ ‖ϕ‖∞

c
.

From (4.4) and (4.5), we conclude that

ϕ1 ∈ H∞(∂Ω, L(K)).

By the same way as above, (a)⇔(c) is proven. We begin to prove (a)⇔(d).
If θ|ϕ, ϕ = θϕ1 for some ϕ1 ∈ H∞(Ω, L(K)). Then

ϕ(z)ϕ(z)∗ = θ(z)ϕ1(z)ϕ1(z)∗θ(z) ≤ ‖ϕ1‖2∞ |θ(z)|2IK .
Let λ = ‖ϕ1‖∞. Since ϕ is quasi-inner, ϕ 6= 0 and so λ > 0. Thus (a) implies
(d).

Conversely, suppose that for any z ∈ Ω,

(4.6) ϕ(z)ϕ(z)∗ ≤ λ2|θ(z)|2IK
for some λ > 0. For each z ∈ Ω, we will define a linear mapping Fz ∈ L(K).
Let

A = {z ∈ Ω : θ(z) = 0}
and

B = {z ∈ Ω : θ(z) 6= 0}.
If z ∈ A, then let Fz = 0. If z ∈ B, then range of θ(z)IK is K and so we can
define a linear mapping Fz from K to range of ϕ(z)∗ by

Fz(θ(z)f) = ϕ(z)∗f

for f ∈ K.

Since
∥∥∥Fz(θ(z)f)

∥∥∥
2

= ‖ϕ(z)∗f‖2 = (ϕ(z)ϕ(z)∗f, f) ≤ λ2(|θ(z)|2f, f) =

λ2 ‖θ(z)f‖2, that is,

(4.7)
∥∥∥Fz(θ(z)f)

∥∥∥ ≤ λ ‖θ(z)f‖,
Fz is well-defined for z ∈ B. By definition of Fz, if z ∈ B,

(4.8) θ(z)F ∗z = ϕ(z).

If z ∈ A, by (4.6) ‖ϕ(z)‖ = 0 and so ϕ(z) = 0(z ∈ A). Thus θ(z)F ∗z = ϕ(z) for
any z ∈ Ω.

Define a function F : Ω → L(K) by

F (z) = F ∗z .
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Then by equation (4.8),
ϕ(z) = θ(z)F (z)

for z ∈ Ω. To finish this proof, we have to prove that F ∈ H∞(Ω, L(K)). From
inequality (4.7), we have

(4.9) ‖F‖∞ ≤ λ

and so F = ϕ
θ has only removable singularities in Ω. Thus F can be defined on

{z ∈ Ω : θ(z) = 0} so that F is analytic and

ϕ = θF.

From (4.9), F ∈ H∞(Ω, L(K)) which proves (d)⇒(a). ¤
We have another result similar to Theorem 4.3.

Theorem 4.4. For any quasi-inner functions θ∈H∞(Ω) and ϕ∈H∞(Ω,L(K)),
the following assertions are equivalent:

(a) ϕ|θ.
(b) θH∞(Ω,K) ⊂ ϕH∞(Ω,K).
(c) θH2(Ω,K) ⊂ ϕH2(Ω,K).
(d) There is a λ > 0 such that |θ(z)|2IK ≤ λ2ϕ(z)ϕ(z)∗ for any z ∈ Ω.

Proof. This theorem is proven by the same way as Theorem 4.3. ¤
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