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QUASI-INNER FUNCTIONS OF A GENERALIZED
BEURLING’S THEOREM

YUN-Su Kim

ABSTRACT. We introduce two kinds of quasi-inner functions. Since every
rationally invariant subspace for a shift operator Sk on a vector-valued
Hardy space H2(Q, K) is generated by a quasi-inner function, we also pro-
vide relationships of quasi-inner functions by comparing rationally invari-
ant subspaces generated by them. Furthermore, we discuss fundamental
properties of quasi-inner functions and quasi-inner divisors.

1. Introduction

Beurling characterized all invariant subspaces for the shift operator on the
Hardy space H? in terms of inner functions [2]. If ¢ and ¢ are inner functions
such that oH? C ¢H?, then we have ¢ is divisible by ¢ [3]. In fact, the converse
is also true [1].

In this paper, 2 denotes a bounded finitely connected region in the complex
plane and R(2) denotes the algebra of rational functions with poles off €.

For a Hilbert space K and a shift operator Sk on a vector-valued Hardy
space H?(Q, K), every R(f)-invariant (rationally invariant) subspace M for
the operator Sk is characterized in terms of quasi-inner functions [4]; M =
YH?(2, K') for some quasi-inner function ¢ : Q — L(K’, K) and a Hilbert
space K'. Even though a quasi-inner function is defined as an operator-valued
function in [4], by the Riesz representation theorem, we also provide a definition
of a scalar-valued quasi-inner function.

For quasi-inner functions ¢ € H>®(, L(C™)) and u € H*(Q), we discuss
some relationships between operator-valued and scalar-valued quasi-inner func-
tions (Theorem 3.4). In addition, by using a multiplication operator on a
vector-valued Hardy space, we study quasi-inner functions (Corollary 3.6).

For quasi-inner functions § € H>(Q)) and ¢ € H*® (£, K), we provide defi-
nitions of the following two cases;

(1) 0 is divisible by ¢.
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(2) ¢ is divisible by 6.

With these definitions, we characterize those divisibilities by comparing
R(Q)-invariant subspaces, 0H?(2, K) and pH?(2, K) (Theorem 4.3 and The-
orem 4.4); for any quasi-inner functions § € H*(Q) and ¢ € H>*(Q, L(K)),
the following assertions are equivalent:

(a) O]e.

(b) @H™(Q, K) C 0H>(Q, K).

(c) pH?*(Q, K) C H?*(Q, K).

(d) There is a A > 0 such that p(2)p(2)* < A2|0(2)|* Ik for any z € Q.

2. Preliminaries and notation

In this paper, C, M, and L(H) denote the set of complex numbers, the
(norm) closure of a set M, and the set of bounded linear operators from H to
H where H is a Hilbert space, respectively.

2.1. Inner functions

Let D be the open unit disc. We denote by H* the Banach space of all
bounded analytic functions ¢ : D — C with the norm ||¢[| = sup{|¢(z)|: z €
D}.

Let 6 and 6" be two functions in H>°. We say that 6 divides 6'(or 0|¢’) if ¢’
can be written as §' = 0 - ¢ for some ¢ € H*. We will use the notation 6 = ¢’
if 616" and €¢’|0.

Recall that a function u € H* is inner if |u(e’)|= 1 almost everywhere on
0D. By Beurling’s theorem on invariant subspaces of the Hardy spaces, for
any inner function # € H>, we have that #H? is an invariant subspace for the
shift operator S : H? — H? defined by (Sf)(z) = 2f(z) for f € H>.

2.2. Hardy spaces

We refer to [5] for basic facts about Hardy space, and recall here the basic
definitions. Let €2 be a bounded finitely connected region in the complex plane.

Definition 2.1. The space H?({) is defined to be the space of analytic func-
tions f on Q such that the subharmonic function |f|? has a harmonic majorant
on . For a fixed z € €, there is a norm on H?(Q) defined by

| £]| = inf{wu(z0)'/? : u is a harmonic majorant of | f|?}.

Let m be the harmonic measure for the point zg, let L?(92) be the L?-space
of complex valued functions on the boundary of €2 defined with respect to m,
and let H?(9Q) be the set of functions f in L*(8Q) such that [, f(2)g(z)dz
= 0 for every g that is analytic in a neighborhood of the closure of Q2. If f
is in H2(£2), then there is a function f* in H?(09) such that f(z) approaches
f*(Xo) as z approaches A9 nontangentially, for almost every Ao relative to m.
The map f — f* is an isometry from H?({2) onto H?(9Q).
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A function f defined on  is in H*(Q) if it is holomorphic and bounded.
Then, H>*(Q) is a closed subspace of L*()) and it is a Banach algebra if
endowed with the supremum norm. Finally, the mapping f — f* is an isometry
of H>°(9) onto a week*-closed subalgebra of L>(92).

Definition 2.2. If K is a Hilbert space, then H?(Q,K) is defined to be the
space of analytic functions f :  — K such that the subharmonic function
||f||2 is majorized by a harmonic function v. Fix a point zp in §2 and define a
norm on H?(Q,K) by

If]l = inf{v(20)"/? : v is a harmonic majorant of || f||*}.

We will work on this vector-valued Hardy space H?(,K). Define a shift
operator S : H?(Q, K) — H*(Q, K) by

(Skf)(2) = 2f(2).

3. Quasi-inner functions

Let R(Q) denote the algebra of rational functions with poles off Q, and T be
an operator in L(H) such that o(T) C Q. Then a closed subspace M is said to
be R(Q)-invariant (rationally invariant) for the operator T, if it is invariant
under u(7T) for any function u € R(2).

To characterize every R({)-invariant subspace for the shift operator Sk,
quasi-inner function was defined in [4].

Definition 3.1. Let K and K’ be Hilbert spaces and let H*(Q, L(K, K'))
be the Banach space of all analytic functions ® : Q@ — L(K, K') with the
supremum norm. For ¢ € H>®(Q, L(K, K')), we will say that ¢ is quasi-inner
if there exists a constant ¢ > 0 such that

le(2)Ell = |kl
for every k € K and almost every z € 02.

Even though a quasi-inner function is defined as an operator-valued function,
by the Riesz representation theorem, we can identify L(C) with C. Thus we
have the following definition of a scalar-valued quasi-inner function:

Definition 3.2. For § € H>®(Q), we will say that 0 is quasi-inner if there
exists a constant ¢ > 0 such that

0(2)] = ¢

for almost every z € 99.

Proposition 3.3. Let K and K’ be Hilbert spaces with dim K = dim K’ =
n(< 0o).

If p € H*(Q, L(K,K")) is a quasi-inner function, then o(z) is invertible
a.e. on OS).
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Proof. Since ¢ € H*(Q, L(K, K')) is quasi-inner, there is a set A C 9Q with
m(A) = 0 such that the range of ¢(zp) is closed, and ¢(zg) is one-to-one for
any zo € 01\ A.

Thus, K and the range of ¢(zp) have the same dimension.

Since dim K = dim K’, we conclude that the range of ¢(z) is K’. Thus
©(z) is invertible for z € OO\ A. O

Theorem 3.4. (a) If ¢ € H>*(Q,L(C")) and u € H>®(Q) are quasi-inner
functions such that
p(2)1(2) = u(z)len,
where 1 € H*(Q, L(C™)), then 9 is also quasi-inner.
(b) Conversely, if ¢ € H®(Q, L(C™)) and » € H>*(Q,L(C"™)) are quasi-

inner functions such that

P(2)¥(2) = u(z)len  or P(2)p(z) = u(z)lcn
for some u € H*®(Q)(u # 0), then u is quasi-inner.

Proof. (a) Since  and u are quasi-inner functions, there are constants mj (> 0)
and ¢;(> 0)(i = 1,2) such that

(i) my < |u(z)| a.e. on 0N, and

(ii) for h € C™, c1 ||| < |le(2)h]|| < c2||h|| a.e. on OR.

Since ¢(2)1(2) = u(z)Ien for h € C", my [|h]| < u(2)] Al =ll¢(2)P(2)h]|<
ca |9(2)h]| a.e. on 0Q. Thus, for h € C",

(3.1) m— IRl < Il (=)h]

a.e. on Of).

From (3.1), we conclude that 9 is also quasi-inner.

(b) Since ¢ € H>®(, L(C™)) and ¢ € H*(Q, L(C™)) are quasi-inner func-
tions, there exist mq(> 0) and mo(> 0) such that, for h € C", my||h] <
lp(z)h|| a.e. on 9 and mq ||| < ||1(2)h] a.e. on OQ. Then

le(2)1b(2)hll = my ([ (2)h]] = mamq [|A]

and so [|¢(2)Y(%)]] > mimg a.e. on 9. Since |u(z)|= ||¢(2)y(2)]], it is proven.
O

Furthermore, by using these quasi-inner functions, we have a generalization
of Beurling’s theorem as following:

Theorem A (Theorem 1.5 in [4]). Let K be a Hilbert space. Then a closed
subspace M of H*(Q, K) is R(Q)-invariant for Sk if and only if there is a
Hilbert space K' and a quasi-inner function ¢ : Q — L(K', K) such that M =
©oH?*(Q, K').

Since we have two kinds of quasi-inner functions, we have two kinds of
R(Q)-invariant subspaces for Sk. One of them is generated by a scalar-valued
quasi-inner function, and the other one is generated by an operator-valued
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quasi-inner function. We will also compare these two R())-invariant subspaces
for Sk in Theorem 4.3.

Let K and K be separable Hilbert spaces. To discuss quasi-inner functions,
we define a multiplication operator for a given function v € H*(Q, L(K1, K2)).
A multiplication operator My : H*(Q, K1) — H?*(Q, K3) is defined by

My (9)(2) = ¢(2)9(2)

for all g in H?*(Q, K1). We can easily check that ||My| = ||¢] .
Recall an important property of this multiplication operator:

Proposition 3.5 ([4]). Let K1 and Ko be separable Hilbert spaces. If T :
H?%(Q, K1) — H%(Q, K3) is a bounded linear operator such that TSk, = Sk, T,
then there is a function ¥ € H®(Q, L(K1, K2)) such that T = M.

Theorem 3.6. Let ¢ € H>®(Q, L(K4, K3)).
(a) If ¢ is quasi-inner, then M, is one-to-one and has closed range.
(b) If My, : H*(Q, K1) — H*(Q, K») is invertible, then ¢ is quasi-inner.

Proof. (a) By Theorem A, M,H?(Q, K1) = pH*(Q, K1) is closed.

Since ¢(z) is a bounded below operator a.e. on 0%, f € ker M, = {f €
H2(Q, K1) : ¢(2)f(2) = 0(2 € Q)} if and only if f* =0 in H?(9Q, K1) if and
only if f =0.

(b) Since @H?(Q2, K1) is R(Q)-invariant for Sk,, by Theorem A,

§0H2(Q,K1) = Lp1H2(Q7 K(])

for a Hilbert space Ky and a quasi-inner function ¢ : Q@ — L(Ky, K»).

Define a linear operator T : H?(Q,K;) — H?*(Q,K,) as follows. For
f € H?(Q,K,), Tf = g such that ¢f = ¢19. Since ¢; is a quasi-inner
function, by (a), T is well-defined and T is bounded. Since Sk, T = TSk,
by Proposition 3.5, T' = M, for a function ¢, € H*(Q, L(K1, K>)). It follows
that

(3:2) p(2) = p1(2)p2(2)
for any z € Q.
Since M, is onto, so is M,,. By (a), M, is one-to-one, and so M, is

invertible. Since M, and M., are invertible, so is T' = M,,. Note that the
invertibility of M, is equivalent to the invertibility of ¢(z) for any z in Q. It
follows that ¢o(z) is bounded below for any z in €.

Since ¢ is quasi-inner, o;(z) is also bounded below a.e. on 9f).

Therefore, by equation (3.2), for any a € K7, there is a constant ¢ > 0 such
that

[e(2)all > cllall
a.e. on Jf). O
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4. Quasi-inner divisors

Let K be a Hilbert space. The time has come to consider divisibilities
between a function in H*(Q2) and a function in H*> (2, L(K)).

Definition 4.1. If § € H*(Q) and ¢ € H*(Q, L(K)), then we say that 6
divides o (denoted 6]p) if p can be written as
p=0-¢
for some ¢’ € H*(Q, L(K)).
Definition 4.2. If § € H>*(Q) and ¢ € H*(, L(K)), then we say that ¢

divides 0 (denoted ¢|0) if there exists p € H> (2, L(K)) satisfying the following
relations;

and

for z € €.

Theorem 4.3. For any quasi-inner functions § € H*(Q2) and p € H>(Q,L(K)),
the following assertions are equivalent:

(a) .

(b) @H>*(Q,K) C 0H>* (2, K).

(c) pH?(Q, K) C 0H?*(Q, K).

(d) There is a X > 0 such that o(2)p(2)* < N2|0(2)|* Ik for any z € Q,
where I is the identity function on K.

Proof. If 0], ¢ = Oy for some @1 € H*(Q, L(K)). Then
CH®(Q, K) = 0p, H®(Q, K) C 0H®(Q, K).

Thus (a) implies (b).

Conversely, suppose that p H>(Q, K) C 0H> (), K). Then
(4.1) P"H*(0Q,K) C "H*(0Q, K).

Let {b; : i € I} be an orthonormal basis of K and g; € H> (02, K) defined
by gi(z) = b;(i € I). By (4.1), there is f; € H* (99, K) such that p*g; = 0* f;,
ie, foriel,

(4.2) @ (2)bi = 0%(2) fi(2).
Define o1 : 0Q — L(K) by fori € I,
(4.3) P1(2)bi = fi(2).

For i € I, define ¢, € H*®(0Q,L(K)) by wi(2)b; = 6;;fi(2)(j € I), where
1 ifi=j
%ij { 0 otherwise. Then

(4.4) 1=

iel
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By (4.2) and (4.3), for each i € I, p*(2)b; = 0*(2)¢1(2)b;, and so
" =01
To prove that (b) implies (a), we have to show that ¢; € H* (99, L(K)).

Since § € H* is a quasi-inner function, there is ¢ > 0 such that |0(z)| > ¢ for
every z € A C 9Q with m(9Q \ A) = 0. For any z € K with ||z|| = 1 and

z €A,
le* ()]l _ llell
(4.5) o1 (2)z]| = =77 <
|6*(2)] ¢
From (4.4) and (4.5), we conclude that
p1 € H*(0Q, L(K)).
By the same way as above, (a)&(c) is proven. We begin to prove (a)<(d).
If 0|, ¢ = O for some @1 € H>®(Q, L(K)). Then
P(2)¢(2)" = 0(2)p1(2)91(2)"0(2) < Nl % 10(2) P I
Let A = ||¢1],,- Since ¢ is quasi-inner, ¢ # 0 and so A > 0. Thus (a) implies
(d).
Conversely, suppose that for any z € €,
(4.6) e(2)p(2)" < N|0(2)]*Ixe

for some A > 0. For each z € Q, we will define a linear mapping F, € L(K).
Let

A={z€0Q:0(z) =0}
and
B={z€Q:6(z) #0}.

If z € A, then let F, = 0. If z € B, then range of 0(z)Ix is K and so we can
define a linear mapping F, from K to range of ¢(2)* by

F.(0G)f) = ol=)"f
for f € K. )
Since [0 = o) fIP = (p(2)e(2) . ) < N(0G)ELF) =
A2(|0(2)f||?, that is,

(4.7) |P@G0)|| < Al 11l
F, is well-defined for z € B. By definition of F,, if z € B,
(4.8) 0(2)F; = o(2).

If z € A, by (4.6) |l¢(2)]] =0 and so p(z) = 0(z € A). Thus 0(z)F} = ¢(z) for
any z € €.
Define a function F': Q@ — L(K) by

F(z) = F.
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Then by equation (4.8),

p(z) = 0(2)F(2)
for z € Q. To finish this proof, we have to prove that F' € H>(Q, L(K)). From
inequality (4.7), we have

(4.9) 1l <A

and so F' = % has only removable singularities in . Thus F' can be defined on
{z € Q:6(z) =0} so that F is analytic and

p =06F.
From (4.9), F € H*(Q, L(K)) which proves (d)=-(a). O
We have another result similar to Theorem 4.3.

Theorem 4.4. For any quasi-inner functions € H* () and p € H>(Q,L(K)),
the following assertions are equivalent:

(a) ¢l

(b) 6H*(Q,K) C pH>®(Q, K).

(c) 0H*(Q, K) C oH?*(Q, K).

(d) There is a X > 0 such that |0(2)|*Ix < N2 (2)p(2)* for any z € Q.

Proof. This theorem is proven by the same way as Theorem 4.3. O
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