Commun. Korean Math. Soc. 33 (2018), No. 3, pp. 787-798

 $\begin{array}{l} {\rm https://doi.org/10.4134/CKMS.c170144} \\ {\rm pISSN:~1225\text{-}1763~/~eISSN:~2234\text{-}3024} \end{array}$

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L^2

Таканіко Nakazi

ABSTRACT. For $1 \leq p \leq \infty$, let H^p be the usual Hardy space on the unit circle. When α and β are bounded functions, a singular integral operator $S_{\alpha,\beta}$ is defined as the following: $S_{\alpha,\beta}(f+\bar{g}) = \alpha f + \beta \bar{g} \ (f \in H^p, g \in zH^p)$. When p=2, we study the hyponormality of $S_{\alpha,\beta}$ when α and β are some special functions.

1. Introduction

Let \mathcal{K} be a Hilbert space and $\mathcal{B}(\mathcal{K})$ be the set of bounded linear operators on \mathcal{K} . For X in $\mathcal{B}(\mathcal{K})$, $[X^*,X]=X^*X-XX^*$ is called the selfcommutator of X. If $[X^*,X]=0$, then X is called a normal operator and if $[X^*,X]\geq 0$, then X is called a hyponormal operator. When \mathcal{H} is a closed subspace of \mathcal{K} , P is the orthogonal projection from \mathcal{K} to \mathcal{H} and I is the identity operator, if

$$P[X^*, X](I - P) = (I - P)[X^*, X]P = 0,$$

then X is called a D-operator. Of course, if X is a normal operator, then X is a D-operator. However a hyponormal operator is not necessary a D-operator. When a hyponormal X is a D-operator, we call it nearly normal.

There are a lot of papers about a normal operator and a hyponormal operator. We are interested in when a concrete operator is normal or hyponormal. There are many researches when X is a Toeplitz operator, for example, [1], [2], [3] and [11]. Recently Yamamoto and the author [12] started to study when X is some singular integral operator. In this paper we continue to study such a problem.

Let L^2 be the usual Lebesgue space and H^2 denotes the usual Hardy space on the unit circle. For x, y in L^2 , put

$$\langle x,y\rangle = \int_0^{2\pi} x(e^{i\theta}) \bar{y}(e^{i\theta}) d\theta/2\pi.$$

Then by the inner product \langle,\rangle , L^2 and H^2 become Hilbert spaces.

Received April 7, 2017; Revised December 4, 2017; Accepted December 29, 2017. 2010 Mathematics Subject Classification. 45E10, 47B35, 47B20.

 $[\]it Key\ words$ and $\it phrases.$ singular integral operator, Toeplitz operator, Hardy space, hyponormal operator.

For α, β in L^{∞} put

$$S_{\alpha,\beta} = (\alpha - \beta)P + \beta I = \alpha P + \beta (I - P),$$

where I is the identity operator on L^2 and P denotes the orthogonal projection to H^2 . Then $S_{\alpha,\beta}$ is called a singular integral operator on L^2 and

$$(S_{\alpha,\beta}f)(z) = \frac{\alpha(z) + \beta(z)}{2}f(z) + \frac{\alpha(z) - \beta(z)}{2} \frac{1}{\pi i} \int \frac{f(\xi)}{\xi - z} d\zeta,$$

where the integral is understood in the sense of Cauchy's principal value (cf. [5, Vol. I, p. 12]). Throughout this paper

$$\alpha = a + F + \bar{f}$$

and

$$\beta = b + G + \bar{g},$$

where $a, b \in \mathbb{C}$ and $F, G, f, g \in zH^2$. Moreover

$$\phi = \alpha - \beta = c + A + \bar{B},$$

where c = a - b, A = F - G and B = f - g.

Yamamoto and the author [12] describe completely the symbols α and β for a normal $S_{\alpha,\beta}$. In this paper, we study when $S_{\alpha,\beta}$ is a hyponormal operator or a nearly normal operator.

In order to study $S_{\alpha,\beta}$, we need a few notations as the following:

$$T_{\alpha} = PM_{\alpha}P, \ \tilde{T}_{\alpha} = (I - P)M_{\alpha}(I - P)$$

and

$$H_{\alpha} = (I - P)M_{\alpha}P, \ \tilde{H}_{\alpha} = PM_{\alpha}(I - P).$$

Then T_{α} is called a Toeplitz operator and H_{α} is called a Hankel operator. Moreover $T_{\alpha}^* = T_{\bar{\alpha}}$, $\tilde{T}_{\alpha}^* = \tilde{T}_{\bar{\alpha}}$ and $H_{\alpha}^* = \tilde{H}_{\bar{\alpha}}$.

2. Hyponormal operator

In this section, we show a necessary and sufficient condition for a hyponormal $S_{\alpha,\beta}$.

Theorem 1. $S_{\alpha,\beta}$ is hyponormal if and only if $\tilde{H}_{\alpha}H_{\bar{\alpha}}-\tilde{H}_{\beta}H_{\bar{\beta}}\geq 0$ and $H_{\beta}\tilde{H}_{\bar{\beta}}-H_{\alpha}\tilde{H}_{\bar{\alpha}}\geq 0$, and

$$|\langle (\tilde{H}_{\alpha}H_{\bar{\alpha}} - \tilde{H}_{\beta}H_{\bar{\beta}})u, u \rangle| \cdot |\langle (H_{\beta}\tilde{H}_{\bar{\beta}} - H_{\alpha}\tilde{H}_{\bar{\alpha}})v, v \rangle| \ge |\langle (\tilde{T}_{\phi}H_{\bar{\beta}} - H_{\alpha}T_{\bar{\phi}})u, v \rangle|^2,$$
where u is in H^2 and v is in $\bar{z}\bar{H}^2$.

Proof. By Lemma 3.1 in [12], $S_{\alpha,\beta}$ is hyponormal if and only if

$$\begin{split} &\langle (\tilde{H}_{\alpha}H_{\bar{\alpha}}-\tilde{H}_{\beta}H_{\bar{\beta}})u,u\rangle + \langle (H_{\beta}\tilde{H}_{\bar{\beta}}-H_{\alpha}\tilde{H}_{\bar{\alpha}})v,v\rangle \\ &+ \langle (\tilde{T}_{\phi}H_{\bar{\beta}}-H_{\alpha}T_{\bar{\phi}})u,v\rangle + \overline{\langle (\tilde{T}_{\phi}H_{\bar{\beta}}-H_{\alpha}\tilde{T}_{\bar{\phi}})u,v\rangle} \geq 0. \ (u\in H^2,v\in\bar{z}\bar{H}^2) \end{split}$$

Hence if $S_{\alpha,\beta}$ is hyponormal, then as v=0, $\langle (\tilde{H}_{\alpha}H_{\bar{\alpha}}-\tilde{H}_{\beta}H_{\bar{\beta}})u,u\rangle \geq 0$ and as u=0, $\langle (H_{\beta}\tilde{H}_{\bar{\beta}}-H_{\alpha}\tilde{H}_{\alpha})v,v\rangle \geq 0$. Moreover then for any real number t,

$$\langle (\tilde{H}_{\alpha}H_{\bar{\alpha}} - \tilde{H}_{\beta}H_{\bar{\beta}})u, u \rangle t^2 - 2 | \langle (\tilde{T}_{\phi}H_{\bar{\beta}} - H_{\alpha}T_{\phi})u, v \rangle | t + \langle (H_{\beta}\tilde{H}_{\bar{\beta}} - H_{\alpha}\tilde{H}_{\bar{\alpha}})v, v \rangle \geq 0.$$

This shows the 'only if' part. The proof is reversible and so the 'if part' follows.

The following lemma is known by [6, Theorem 7] or the proof of [7, Lemma 4]. However we give a proof for completeness.

Lemma 1. (1) $\tilde{H}_{\alpha}H_{\bar{\alpha}} \geq \tilde{H}_{\beta}H_{\bar{\beta}}$ if and only if there exists k in H^{∞} such that $||k||_{\infty} \leq 1$ and $k\bar{\alpha} - \bar{\beta}$ belongs to H^{∞} .

(2) $H_{\beta}\tilde{H}_{\bar{\beta}} \geq H_{\alpha}\tilde{H}_{\bar{\alpha}}$ if and only if there exists h in H^{∞} such that $||h||_{\infty} \leq 1$ and $h\beta - \alpha$ belongs to H^{∞} .

Proof. We show (2) because (1) can be shown similarly.

Suppose there exists a contractive function h in H^{∞} such that $h\beta - \alpha \in H^{\infty}$. Then $H_{h\beta} = H_{\alpha}$ and so $\tilde{H}_{\overline{h\beta}} = \tilde{H}_{\overline{\alpha}}$. Hence

$$H_{\alpha}\tilde{H}_{\bar{\alpha}} = H_{h\beta}\tilde{H}_{\bar{h}\bar{\beta}} = H_{\beta}T_{h}T_{\bar{h}}\tilde{H}_{\bar{\beta}} \le H_{\beta}\tilde{H}_{\bar{\beta}}$$

because $T_h T_{\bar{h}} \leq I$, $H_{h\beta} = H_{\beta} T_h$ and $\tilde{H}_{\overline{h\beta}} = T_{\bar{h}} \tilde{H}_{\bar{\beta}}$.

Conversely suppose $H_{\beta}\tilde{H}_{\bar{\beta}} \geq H_{\alpha}\tilde{H}_{\bar{\alpha}}$. Then by a theorem of Douglas [4], there exists a contraction B such that $B\tilde{H}_{\bar{\beta}} = \tilde{H}_{\bar{\alpha}}$. Since $T_{\bar{z}}\tilde{H}_{\bar{\beta}} = \tilde{H}_{\bar{\beta}}\tilde{T}_z$ and $T_{\bar{z}}\tilde{H}_{\bar{\alpha}} = \tilde{H}_{\bar{\alpha}}\tilde{T}_{\bar{z}}, B\tilde{H}_{\bar{\beta}}\tilde{T}_z = BT_{\bar{z}}\tilde{H}_{\bar{\beta}}$ and $B\tilde{H}_{\bar{\beta}}\tilde{T}_z = \tilde{H}_{\bar{\alpha}}\tilde{T}_z = T_{\bar{z}}\tilde{H}_{\bar{\alpha}} = T_{\bar{z}}B\tilde{H}_{\bar{\beta}}$. Hence $BT_{\bar{z}}\tilde{H}_{\bar{\beta}} = T_{\bar{z}}B\tilde{H}_{\bar{\beta}}$. Since $T_{\bar{z}}$ $(Ran\tilde{H}_{\bar{\beta}}) \subseteq Ran\tilde{H}_{\bar{\beta}}, BS_{\bar{z}} = S_{\bar{z}}B$ where $S_{\bar{z}}$ is the restriction to of $T_{\bar{z}}$ to the closure $Ran\tilde{H}_{\bar{\beta}}$. By a theorem of Sarason [13], $B^* = S_h$ for some h in H^{∞} with $\|h\|_{\infty} \leq 1$. Hence $\tilde{H}_{\bar{\alpha}} = S_{\bar{h}}\tilde{H}_{\bar{\beta}} = T_{\bar{h}}\tilde{H}_{\bar{\beta}} = \tilde{H}_{\bar{\beta}\bar{h}}$. Thus $h\beta - \alpha$ belongs to H^{∞} .

Theorem 2. If $S_{\alpha,\beta}$ is hyponormal, then there exist k and h are in H^{∞} such that $||k||_{\infty} \leq 1$ and $||h||_{\infty} \leq 1$, and $k\bar{\alpha} - \bar{\beta}$ and $h\beta - \alpha$ belong to H^{∞} . Hence

$$(k-1)\bar{G} + k\bar{A}$$
 and $(h-1)\bar{f} - h\bar{B}$

belong to H^{∞} .

Proof. It is clear by Theorem 1 and Lemma 1.

Theorem 3. Let $\alpha = a + F + \bar{f}$, $\beta = b + G + \bar{g}$, $\psi_+ = F + \bar{G}$ and $\psi_- = f + \bar{g}$ where F, f, G and g are in zH^{∞} . If $S_{\alpha,\beta}$ is hyponormal, then T_{ψ_+} and T_{ψ_-} are hyponormal.

Proof. If $S_{\alpha,\beta}$ is hyponormal, then by Theorem 2, there exist contractions k and h in H^{∞} such that $k\bar{\alpha} - \bar{\beta}$ and $h\beta - \alpha$ belong to H^{∞} . Hence $k\bar{F} - \bar{G}$ and $h\bar{g} - \bar{f}$ belong to H^{∞} . Therefore $k(\bar{F} + G) - (\bar{G} + F)$ and $h(\bar{g} + f) - (\bar{f} + g)$ belong to H^{∞} . Now by [11, Lemma 1] $T_{\psi_{+}}$ and $T_{\psi_{-}}$ are hyponormal.

If $T_{F+\bar{G}}$ is hyponormal, then it is easy to see $[T_F^*, T_F] \geq [T_G^*, T_G]$. If F and G are inner, then $I-T_FT_F^* \geq I-T_GT_G^*$. Hence $FH^2 \supseteq GH^2$. Therefore G=QF for some inner Q. If $S_{\alpha,\beta}$ is hyponormal, then by Theorem 3 $[T_F^*, T_F] \geq [T_G^*, T_G]$ and $[T_g^*, T_g] \geq [T_f^*, T_f]$. Moreover if F, G, f and g are inner, then G=QF and f=qg for some inner Q and q.

When $T_{F+\bar{G}}$ is hyponormal, if F and G are polynomials we have a lot of papers [8], [9], [10], [11] and [14].

3. Analytic symbol

In this section we give sufficient conditions for $S_{\alpha,\beta}$ to be a hyponormal operator.

Theorem 4. (1) $S_{\alpha,\beta}$ is nearly normal if and only if $\tilde{H}_{\alpha}H_{\bar{\alpha}} - \tilde{H}_{\beta}H_{\bar{\beta}} \geq 0$, $H_{\beta}\tilde{H}_{\bar{\beta}} - H_{\alpha}\tilde{H}_{\bar{\alpha}} \geq 0$ and $\tilde{T}_{\phi}H_{\bar{\beta}} - H_{\alpha}T_{\bar{\phi}} = 0$.

(2) If $S_{\alpha,\beta}$ is hyponormal, and $\tilde{H}_{\alpha}H_{\bar{\alpha}} = \tilde{H}_{\beta}H_{\bar{\beta}}$ or $H_{\beta}\tilde{H}_{\bar{\beta}} = H_{\alpha}\tilde{H}_{\bar{\alpha}}$, then $S_{\alpha,\beta}$ is nearly normal.

Proof. (1) It is clear by Theorem 1 and the definition of a nearly normal operator.

(2) It is clear by Theorem 1 and (1) and the definition of a nearly normal operator. \Box

Corollary 1. If both α and β are in H^{∞} , then the following (1), (2) and (3) are equivalent.

- (1) $S_{\alpha,\beta}$ is hyponormal.
- (2) $S_{\alpha,\beta}$ is nearly normal.
- (3) $T_{\alpha+\bar{\beta}}$ is hyponormal and $T_{\phi}H_{\bar{\beta}}=0$.

Proof. (1) \Rightarrow (2). Since $H_{\beta}\tilde{H}_{\bar{\beta}} = H_{\alpha}\tilde{H}_{\bar{\alpha}} = 0$, by (2) of Theorem 4 $S_{\alpha,\beta}$ is nearly normal.

- $(2)\Rightarrow (3)$. By (1) of Theorem 4 and by (1) of Lemma 1 there exists k in H^{∞} such that $||k||_{\infty} \leq 1$ and $k\bar{\alpha} \bar{\beta} \in H^{\infty}$. Hence $k(\bar{\alpha} + \beta) (\alpha + \bar{\beta})$ belongs to H^{∞} . By [11, Lemma 1], $T_{\alpha+\bar{\beta}}$ is hyponormal and $\tilde{T}_{\phi}H_{\bar{\beta}} H_{\alpha}T_{\bar{\phi}} = 0$ by (1) of Theorem 4 and $\alpha \in H^{\infty}$ by hypothesis.
- $(3)\Rightarrow(1)$. By [11, Lemma 1] there exists k in H^{∞} such that $||k||_{\infty} \leq 1$ and $k(\bar{\alpha}+\beta)-(\alpha+\bar{\beta})\in H^{\infty}$. Hence $k\bar{\alpha}-\bar{\beta}$ be longs to H^{∞} . By (1) and (2) of Lemma 1, and (1) of Theorem 4 $S_{\alpha,\beta}$ is nearly normal and so hyponormal. \square

Corollary 2. If both $\bar{\alpha}$ and $\bar{\beta}$ are in H^{∞} , then a result similar to Corollary 1 holds.

Lemma 2. (1) Put $\alpha = q_{\alpha}t_{\alpha}$, $\beta = q_{\beta}t_{\beta}$ and $\phi = \alpha - \beta = qt$ where q_{α} , q_{β} and q are inner, and t_{α} , t_{β} and t are outer. Suppose $Ker\tilde{H}_{\beta} = \bar{Q}_{\beta}\bar{z}\bar{H}^2$ and Q_{β} is inner. Then $\tilde{H}_{\beta}\tilde{T}_{\bar{\phi}} = 0$ if and only if $q = Q_{\beta}q_0$ where q_0 is inner.

- (2) Put $\bar{\alpha} = q_{\alpha}t_{\alpha}, \bar{\beta} = q_{\beta}t_{\beta}$, and $\bar{\phi} = \bar{\alpha} \bar{\beta} = qt$ where q_{α}, q_{β} and q are inner, and t_{α}, t_{β} and t are outer. Suppose $KerH_{\alpha} = Q_{\alpha}H^2$. Then $H_{\alpha}T_{\bar{\phi}} = 0$ if and only if $q = Q_{\alpha}q_0$ where q_0 is inner.
- *Proof.* (1) $\tilde{H}_{\beta}\tilde{T}_{\bar{\phi}} = 0$ if and only if $\tilde{T}_{\bar{\phi}}(\bar{z}\bar{H}^2) = \bar{q}\bar{z}\bar{t}\bar{H}^2 \subseteq \bar{Q}_{\beta}\bar{z}\bar{H}^2$ by the definition of Q_{β} . Hence this is equivalent to $q_0 = \bar{Q}_{\beta}q$ is inner.

(2) It can be proved as (1).

Corollary 3. Suppose q_{α}, q_{β} and q are inner, and t_{α}, t_{β} and t are outer.

- (1) Put $\alpha = q_{\alpha}t_{\alpha}, \beta = q_{\beta}t_{\beta}$ and $\phi = \alpha \beta = qt$. Suppose $Ker\tilde{H}_{\beta} = \bar{Q}_{\beta}\bar{z}\bar{H}^{2}$ and Q_{β} are inner. Then $S_{\alpha,\beta}$ is nearly normal if and only if there exists a contraction k in H^{∞} such that $k\bar{\alpha} - \bar{\beta} \in H^{\infty}$ and $q = Q_{\beta}q_0$ where q_0 is inner.
- (2) Put $\bar{\alpha} = q_{\alpha}t_{\alpha}$, $\bar{\beta} = q_{\beta}t_{\beta}$ and $\bar{\phi} = \bar{\alpha} \bar{\beta} = qt$. Suppose $KerH_{\alpha} = Q_{\alpha}H^2$ and Q_{α} are inner. Then $S_{\alpha,\beta}$ is nearly normal if and only if there exists a contraction h in H^{∞} such that $h\beta - \alpha \in H^{\infty}$ and $q = Q_{\alpha}q_0$ where q_0 is inner.
- *Proof.* (1) Since $H_{\alpha}T_{\bar{\phi}}=0$, if $S_{\alpha,\beta}$ is nearly normal, then by (1) of Theorem 4 $\tilde{H}_{\beta}\tilde{T}_{\bar{\phi}}=0$. Now (1) of Lemma 1 and (1) of Lemma 2 show (1). The converse is clear by (1) of Lemma 1 and (1) of Lemma 2 and (1) of Theorem 4.
- (2) Since $T_{\phi}H_{\bar{\beta}}=0$, if $S_{\alpha,\beta}$ is nearly normal, then by (1) of Theorem 4 $H_{\alpha}T_{\bar{\phi}}=0$. Now (2) of Lemma 1 and (2) of Lemma 2 show (2). The converse is clear by (2) of Lemma 1 and (2) of Lemma 2 and (1) of Theorem 4.
- In (1) of Corollary 3, $\operatorname{Ker} \tilde{H}_{\beta} = \{0\}$ if and only if $\beta = t_{\beta}$ is a cyclic vector of $T_{\bar{z}}$ in H^2 . Similarly, in (2) of Corollary 3, $\operatorname{Ker} H_{\alpha} = \{0\}$ if and only if $\alpha = \bar{t}_{\alpha}$ is a cyclic vector of \tilde{T}_z in $\bar{z}\bar{H}^2$.
- Corollary 4. (1) Let α and β be in H^{∞} . Suppose β is a cyclic vector of $T_{\bar{z}}$ in H^2 . Then $S_{\alpha,\beta}$ is nearly normal if and only if there exists a contraction k in H^{∞} such that $k\bar{\alpha} - \bar{\beta}$ belongs to H^{∞} .
- (2) Let $\bar{\alpha}$ and $\bar{\beta}$ be in H^{∞} . Suppose α is a cyclic vector of \tilde{T}_z in $\bar{z}\bar{H}^2$. Then $S_{\alpha,\beta}$ is nearly normal if and only if there exists a contraction h in H^{∞} such that $h\beta - \alpha$ belongs to H^{∞} .

Example I. (1) If $\alpha = Q(cq_{\beta} + \bar{m})$ and $\beta = cq_{\beta}$ where Q and q_{β} are inner and $m \in H^2$, $q_{\beta}m \in H^2 \ominus QzH^2$ and $c \in \mathbb{C}$, then $S_{\alpha,\beta}$ is nearly normal.

- (2) If $\alpha = \sum_{j=1}^{n} a_j z^j$ and $\beta = a_n z$, then $S_{\alpha,\beta}$ is nearly normal.
- (3) Suppose $\alpha = a_0 + a_1 z$, $\beta = b_0 + b_1 z$ and $\alpha \neq \beta$. Then $S_{\alpha,\beta}$ is nearly normal if and only if $\alpha = a_0$ and $\beta = b_0$.

Proof. (1) Since $m \in H^2 \ominus QzH^2$, α belongs to H^{∞} . Moreover $Q\bar{\alpha} - \bar{\beta} = m$. On the other hand, since $q_{\beta}m \in H^2 \ominus QzH^2$,

$$\alpha - \beta = c(Q - 1)q_{\beta} + Q\bar{m} = c(Q - 1)q_{\beta} + q_{\beta}s,$$

where $s = Q\bar{q}_{\beta}\bar{m} \in H^{\infty}$. In (1) of Corollary 3, if q is the inner part of $q_{\beta}\{c(Q-1)+s\}$ and $Q_{\beta}=q_{\beta}$, then $S_{\alpha,\beta}$ is nearly normal.

(2) In (1), put $Q = z^{n-1}$, $q_{\beta} = z$ and $a_n = c$. Then $\alpha = Q(cz + \bar{m})$ and $m = \bar{a}_1 z^{n-2} + \dots + \bar{a}_{n-2} z + \bar{a}_{n-1}.$

(3) By (1) of Corollary 3, it is clear.
$$\Box$$

We can give a similar example to Example I using (2) of Corollary 3.

4. Polynomial symbol

In this section, we would like to study the hyponormality of $S_{\alpha,\beta}$ when $\alpha = \sum_{j=-n}^{n} \alpha_j z^j$ and $\beta = \sum_{j=-n}^{n} \beta_j z^j$. In this special case, it is still difficult to study the hyponormality. We study it essentially when n=1 and n=2.

Lemma 3. Let $\alpha = a + F_n z^n + \bar{f}_n \bar{z}^n$, $\beta = b + G_n z^n + \bar{g}_n \bar{z}^n$ and $\phi = \alpha - \beta =$ $c + A_n z^n + \bar{B}_n \bar{z}^n$ for $n \geq 1$. If $u = \sum_{j=0}^{\ell} u_j z^j$, $\ell \geq n$ and $v = \sum_{j=1}^{m} v_j \bar{z}^j$, $m \ge n+1$, then the followings hold.

- $(1) \langle \tilde{T}_{\phi} H_{\bar{\beta}} u, v \rangle = \bar{G}_{n} (c \Sigma_{j=0}^{n-1} u_{j} \bar{v}_{n-j} + \bar{B}_{n} \Sigma_{j=0}^{n-1} u_{j} \bar{v}_{2n-j}).$ $(2) \langle H_{\alpha} T_{\bar{\phi}} u, v \rangle = \bar{f}_{n} (\bar{c} \Sigma_{j=0}^{n-1} u_{j} \bar{v}_{n-j} + \bar{A}_{n} \Sigma_{j=n}^{2n-1} u_{j} \bar{v}_{2n-j}).$ $(3) \langle (\tilde{T}_{\phi} H_{\bar{\beta}} H_{\alpha} T_{\bar{\phi}}) u, v \rangle = (\bar{G}_{n} c \bar{f}_{n} \bar{c}) \Sigma_{j=0}^{n-1} u_{j} \bar{v}_{n-j} + \bar{G}_{n} \bar{B}_{n} \Sigma_{j=0}^{n-1} u_{j} \bar{v}_{2n-j}).$ $-\bar{f}_n \bar{A}_n \Sigma_{j=n}^{2n-1} u_j \bar{v}_{2n-j}.$ $(4) ||H_{\bar{\alpha}} u||^2 = |F_n|^2 \Sigma_{j=0}^{n-1} |u_j|^2.$ $(5) ||\tilde{H}_{\bar{\beta}} v||^2 = |a|^{2} \Sigma_{j=0}^{n-1} |u_j|^2.$

- (5) $\|\tilde{H}_{\bar{B}}v\|^2 = |g_n|^2 \sum_{j=1}^n |v_j|^2$

Proof. It is easy to see this lemma by a calculation.

Theorem 5. Let $\alpha = a + F_n z^n + \bar{f}_n \bar{z}^n$, $\beta = b + G_n z^n + \bar{g}_n \bar{z}^n$ and $\alpha - \beta =$ $c + A_n z^n + \bar{B}_n \bar{z}^n$. Then $S_{\alpha,\beta}$ is hyponormal if and only if for any complex sequences $\{u_j\}_{j=0}^n$ and $\{v_j\}_{j=1}^{n+1}$

$$|(\bar{G}_n c - \bar{f}_n \bar{c})|^2 \le (|F_n|^2 - |G_n|^2)(|g_n|^2 - |f_n|^2),$$

where $|F_n| \ge |G_n|, |g_n| \ge |f_n| \text{ and } G_n(\overline{f_n - g_n}) = f_n(F_n - G_n) = 0.$

Proof. By Theorem 1 and Lemma 3, $S_{\alpha,\beta}$ is hyponormal if and only if

$$|(\bar{G}_n c - \bar{f}_n \bar{c}) \sum_{j=0}^{n-1} u_j \bar{v}_{n-j} + \bar{G}_n \bar{B}_n \sum_{j=0}^{n-1} u_j \bar{v}_{2n-j} - \bar{f}_n \bar{A}_n \sum_{j=n}^{2n-1} u_j \bar{v}_{2n-j}|^2$$

$$\leq (|F_n|^2 - |G_n|^2)(|g_n|^2 - |f_n|^2) \left(\sum_{j=0}^{n-1} |u_j|^2\right) \left(\sum_{j=1}^{n} |v_j|^2\right),$$

where $|F_n| \geq |G_n|$ and $|g_n| \geq |f_n|$. If $\prod_{j=n+1}^{2n} v_j \neq 0$, then choosing $\{u_j\}_{j=0}^{n-1}$ as like $|\Sigma_{j=0}^{n-1}u_j\bar{v}_{2n-j}|\to\infty$, we can get $\bar{G}_n\bar{B}_n=0$. If $\prod_{j=n}^{2n-1}u_j\neq 0$, then choosing $\{v_j\}_{j=1}^n$ as like $|\Sigma_{j=n}^{2n-1}u_j\bar{v}_{2n-j}|\to\infty$, we can get $f_nA_n=0$. Hence $S_{\alpha,\beta}$ is hyponormal if and only if

$$|(\bar{G}_n c - \bar{f}_n \bar{c}) \sum_{i=0}^{n-1} u_j \bar{v}_{n-j}|^2$$

$$\leq (|F_n|^2 - |G_n|^2)(|g_n|^2 - |f_n|^2) \left(\sum_{j=0}^{n-1} |u_j|^2\right) \left(\sum_{j=1}^n |v_j|^2\right),$$

where $G_nB_n=f_nA_n$, $|F_n|\geq |G_n|$ and $|g_n|\geq |f_n|$. This shows this theorem because

$$\left| \sum_{j=0}^{n-1} u_j \bar{v}_{n-j} \right|^2 \le \left(\sum_{j=0}^{n-1} |u_j|^2 \right) \left(\sum_{j=0}^{n-1} |\bar{v}_{n-j}|^2 \right).$$

Corollary 5. Let $\alpha = a_{-1}\bar{z} + a_0 + a_1z$ and $\beta = b_{-1}\bar{z} + b_0 + b_1z$. Then $S_{\alpha,\beta}$ is hyponormal if and only if

$$|\bar{b}_1(a_0 - b_0) - a_{-1}(\overline{a_0 - b_0})|^2 \le (|a_1|^2 - |b_1|^2)(|b_{-1}|^2 - |a_{-1}|^2),$$

where
$$|a_1| \ge |b_1|$$
, $|b_{-1}| \ge |a_{-1}|$ and $b_1(a_{-1} - b_{-1}) = a_{-1}(a_1 - b_1) = 0$.

Corollary 6. Let $\alpha = a + F_n z^n + \bar{f}_n \bar{z}^n$, $\beta = b + G_n z^n + \bar{g}_n \bar{z}^n$ and $\alpha - \beta = c + A_n z^n + \bar{B}_n \bar{z}^n$. Then $S_{\alpha,\beta}$ is hyponormal if and only if $S_{\alpha,\beta}$ is nearly normal.

Proof. By Theorem 5, if $S_{\alpha,\beta}$ is hyponormal, then $G_n(\overline{f_n-g_n})=f_n(F_n-G_n)=0$. Hence if $F_n=G_n$, then $S_{\alpha,\beta}$ is nearly normal. If $f_n=0$, then $G_n\bar{g}_n=0$ and $|\bar{G}_nc|^2\leq (|F_n|^2-|G_n|^2)|g_n|^2$. This shows $S_{\alpha,\beta}$ is nearly normal. \square

The following theorem is a generalization of Corollary 5. It is not beautiful but will be useful and important.

Theorem 6. Let $\alpha = a + F_1 z + F_2 z^2 + \bar{f}_1 \bar{z} + \bar{f}_2 \bar{z}^2$, $\beta = b + G_1 z + G_2 z^2 + \bar{g}_1 \bar{z} + \bar{g}_2 \bar{z}^2$ and $\phi = \alpha - \beta = c + A_1 z + A_2 z^2 + \bar{B}_1 \bar{z} + \bar{B}_2 \bar{z}^2$. Then $S_{\alpha,\beta}$ is hyponormal if and only if

$$\begin{aligned} & |\{(c\bar{G}_1u_0 + c\bar{G}_2u_1 + A_1\bar{G}_2u_0) - \bar{f}_1(\bar{c}u_0 + \bar{A}_1u_1) - \bar{f}_2(\bar{c}u_1)\}\bar{v}_1 \\ & + (c\bar{G}_2u_0 + \bar{B}_1\bar{G}_1u_0 + \bar{B}_1\bar{G}_2u_1)\bar{v}_2|^2 \\ & \leq \{(|\bar{F}_1u_0 + \bar{F}_2u_1|^2 - |\bar{G}_1u_0 + \bar{G}_2u_1|^2) + (|\bar{F}_2|^2 - |\bar{G}_2|^2)|u_0|^2\} \\ & \times \{(|g_1v_1 + g_2v_2|^2 - |f_1v_1 + f_2v_2|^2) + (|g_2|^2 - |f_2|^2)|v_1|^2\} \end{aligned}$$

and $|\bar{F}_1 u_0 + \bar{F}_2 u_1|^2 - |\bar{G}_1 u_0 + \bar{G}_2 u_1|^2 + (|\bar{F}_2|^2 - |\bar{G}_2|^2)|u_0|^2 \ge 0$, $|g_1 v_1 + g_2 v_2|^2 - |f_1 v_1 + f_2 v_2|^2 + (|g_2|^2 - |f_2|^2)|v_1|^2 \ge 0$ for $u_j \in \mathbb{C}$ (j = 0, 1) and $v_j \in \mathbb{C}$ (j = 1, 2), where $B_2 G_2 = 0$, $B_1 G_2 + \bar{c} B_2 G_1 = 0$, $A_2 f_2 = 0$, $A_2 f_1 = 0$, and $A_1 f_2 = 0$.

Proof. Note that

 $\|H_{\bar{\alpha}}u\|^2 - \|H_{\bar{\beta}}u\|^2 = (|\bar{F}_1u_0 + \bar{F}_2u_1|^2 - |\bar{G}_1u_0 + \bar{G}_2u_1|^2) + (|\bar{F}_2|^2 - |\bar{G}_2|^2)|u_0|^2$ and

$$\|\tilde{H}_{\bar{\beta}}v\|^2 - \|\tilde{H}_{\bar{\alpha}}v\|^2 = (|g_1v_1 + g_2v_2|^2 - |f_1v_1 + f_2v_2|^2) + (|g_2|^2 - |f_2|^2)|v_1|^2.$$

Moreover

$$\begin{split} \langle \tilde{T}_{\phi} H_{\bar{\beta}} u, v \rangle &= (c \bar{G}_1 u_0 + c \bar{G}_2 u_1 + A_1 \bar{G}_2 u_0) \bar{v}_1 + (c \bar{G}_2 u_0 + \bar{B}_1 \bar{G}_1 u_0 + \bar{B}_1 \bar{G}_2 u_1) \bar{v}_2 \\ &+ (\bar{B}_1 \bar{G}_2 u_0 + c \bar{B}_2 \bar{G}_1 u_0 + c \bar{B}_2 \bar{G}_2 u_1) \bar{v}_3 + (\bar{B}_2 \bar{G}_2 u_0) \bar{v}_4 \end{split}$$

and

$$\langle H_{\alpha}T_{\bar{\phi}}u,v\rangle = \{\bar{f}_{1}(\bar{c}u_{0} + \bar{A}_{1}u_{1} + \bar{A}_{2}u_{2}) + \bar{f}_{2}(\bar{c}u_{1} + \bar{A}_{1}u_{2} + \bar{A}_{2}u_{3})\}\bar{v}_{1} + \bar{f}_{2}(\bar{c}u_{0} + \bar{A}_{1}u_{1} + \bar{A}_{2}u_{2})\bar{v}_{2}.$$

Theorem 1 and the proof of Theorem 5 show the theorem. For example, as $|v_4| \to \infty$ we $B_2G_2 = 0$ and as $|v_3| \to \infty$ we get $B_1G_2 + \bar{c}B_2G_1 = 0$. Similarly as $|u_3| \to \infty$ we get $f_2A_2 = 0$ and as $|u_2| \to \infty$ we get $f_1A_2 = f_2A_1 = 0$.

Corollary 7. When $c = 0, S_{\alpha,\beta}$ is hyponormal if and only if

$$|A_{1}(G_{2}u_{0} - \bar{f}_{1}u_{1})\bar{v}_{1} + \bar{B}_{1}(\bar{G}_{1}u_{0} + \bar{G}_{2})v_{2}|^{2}$$

$$\leq \{|F_{1}u_{0} + \bar{F}_{2}u_{1}|^{2} - |\bar{G}_{1}u_{0} + \bar{G}_{2}u_{1}|^{2} + (|\bar{F}_{2}|^{2} - |\bar{G}_{2}|^{2})|u_{0}|^{2}\}$$

$$\times \{(|g_{1}v_{1} + g_{2}v_{2}|^{2} - |f_{1}v_{1} + f_{2}v_{2}|^{2} + (|g_{2}|^{2}|f_{2}|^{2}|v_{1}|^{2})\}$$

 $\begin{array}{l} \mbox{and } |\bar{F}_1 u_0 + \bar{F}_2 u_1|^2 - |\bar{G}_1 u_0 + \bar{G}_2 u_1|^2 + (|\bar{F}_2|^2 - |\bar{G}_2|^2) |u_0|^2 \geq 0, \ |g_1 v_1 + g_2 v_2|^2 - |f_1 v_1 + f_2 v_2|^2 + (|g_2|^2 - |f_2|^2) |v_1|^2 \geq 0 \ \ where \ B_2 G_2 = B_1 G_2 = A_2 f_2 = A_2 f_1 = A_1 f_2 = 0 \ \ and \ u_i, v_j \in \mathbb{C} \ \ (i = 0, 1; \ j = 1, 2). \end{array}$

Corollaries 8 and 9 give examples that are hyponormal but not nearly normal and Corollary 10 give examples that are nearly normal.

Corollary 8. When $A_1 = 0$, $A_2B_1B_2 \neq 0$, $S_{\alpha,\beta}$ is hyponormal if and only if $|c\bar{G}_1u_0\bar{v}_1 + B_1G_1u_0\bar{v}_2|^2 \leq (|\bar{F}_1u_0 + \bar{F}_2u_1|^2 + |F_2|^2|u_0|^2)(|g_1v_1 + g_2v_2|^2 + |g_2|^2|v_1|^2)$, where $G_2 = f_1 = f_2 = 0$ and $u_i, v_j \in \mathbb{C}$ (i = 0, 1; j = 1, 2).

Proof. If $S_{\alpha,\beta}$ is hyponormal, then Theorem 6 shows and so $G_2 = f_1 = f_2 = 0$ the 'only if' part. Conversely the 'if' part is clear.

Example II. Let $\alpha = a + F_1 z + F_2 z^2$ and $\beta = b + G_1 z + \bar{g}_1 \bar{z} + \bar{g}_2 \bar{z}^2$.

- (1) If $S_{\alpha,\beta}$ is hyponormal, then $|(a-b)\bar{G}_1+g_1G_1|^2 \leq (|F_1+F_2|^2+|F_2|^2)(|g_1+g_2|^2+|g_2|^2)$. If $S_{\alpha,\beta}$ is nearly normal, then $(a-b)\bar{G}_1+g_1G_1=0$.
- $|g_2|^2 + |g_2|^2$). If $S_{\alpha,\beta}$ is nearly normal, then $(a-b)\bar{G}_1 + g_1G_1 = 0$. (2) If $\alpha = 1 + z + z^2$ and $\beta = z + \bar{z} + \bar{z}^2$, then $S_{\alpha,\beta}$ is hyponormal but not nearly normal.

Proof. (1) In Corollary 8, as $u_0 = u_1 = v_1 = v_2 = 1$, we can get (1).

(2) In Corollary 8, $c = B_1 = 1$ and $F_1 = F_2 = G_1 = g_1 = g_2 = 1$. Hence $S_{\alpha,\beta}$ is hyponormal if and only if $|u_0\bar{v}_1 + u_0\bar{v}_2|^2 \le (|u_0 + u_1|^2 + |u_0|^2)(|v_1 + v_2|^2 + |v_1|^2)$. Hence $S_{\alpha,\beta}$ is hyponormal and by (1) $S_{\alpha,\beta}$ is not nearly normal because $(a - b)\bar{G}_1 + g_1G_1 = 2$.

Corollary 9. Suppose $A_1A_2B_1B_2 \neq 0$. Then $S_{\alpha,\beta}$ is hyponormal if and only if

$$|B_1G_1|^2|v_2|^2 \le (|F_2|^2 - |G_1|^2)(|g_1v_1 + g_2v_2|^2 + |g_2|^2|v_1|^2),$$

where $G_2 = cG_1 = f_2 = f_1 = 0$ and v_j $(j = 1, 2)$.

Proof. If $S_{\alpha,\beta}$ is hyponormal, by Theorem 6, $G_2 = cG_1 = f_2 = f_1 = 0$. Hence by Theorem 6,

$$|B_1G_1|^2|u_0|^2|v_2|^2 \le \{|\bar{F}_1u_0 + \bar{F}_2u_1|^2 + (|F_2|^2 - |G_1|^2)|u_0|^2\} \times (|g_1v_1 + g_2v_2|^2 + |g_2|^2|v_1|^2).$$

Since $F_2 \neq 0$, if we choose u_1 as $-\bar{F}_1 u_0/\bar{F}_2$, then the 'only if' part of corollary follows. The 'if' part is clear.

Example III. Let $\alpha = a + F_1 z + F_2 z^2$ and $\beta = a + G_1 z + \bar{g}_1 \bar{z} + \bar{g}_2 \bar{z}^2$ where $F_2 \neq 0, \ g_1 g_2 \neq 0, \ |F_2| \neq |G_1|$ and $F_1 \neq G_1$. Then

(1) $S_{\alpha,\beta}$ is hyponormal if and only if

$$\frac{|G_1|^2}{|F_2|^2 - |G_1|^2} \le \left| t + \frac{g_2}{g_1} \right|^2 + |t|^2 \left| \frac{g_2}{g_1} \right|^2$$

for any $t \in \mathbb{C}$. Moreover $S_{\alpha,\beta}$ is not nearly normal.

(2) When $g_1 = g_2, S_{\alpha,\beta}$ is hyponormal if and only if $2|G_1|^2 \leq |F_2|^2$.

Proof. (1) By Theorem 6, $S_{\alpha,\beta}$ is hyponormal if and only if

$$|g_1G_1|^2 \le (|F_2|^2 - |G_1|^2) \left(\left| g_1 \frac{v_1}{v_2} + g_2 \right|^2 + |g_2|^2 \left| \frac{v_1}{v_2} \right|^2 \right).$$

Put $t = v_1/v_2$. Then

$$\frac{|G_1|^2}{|F_2|^2 - |G_1|^2} \le \left| t + \frac{g_2}{g_1} \right|^2 + |t|^2 \left| \frac{g_2}{g_1} \right|^2$$

for any $t \in \mathbb{C}$ and $S_{\alpha,\beta}$ is not nearly normal.

(2) When $g_1 = g_2$, by (1) $S_{\alpha,\beta}$ is hyponormal if and only if

$$\frac{|G_1|^2}{|F_2|^2 - |G_1|^2} \le |t+1|^2 + |t|^2$$

for any $t \in \mathbb{C}$. Since $\inf(|t+1|^2+|t|^2) = 1/4$, $S_{\alpha,\beta}$ is hyponormal if and only if $4 |G_1|^2 \le |F_2|^2 - |G_1|^2$.

Lemma 4. Let $\alpha=a+F_1z+F_2z^2+\bar{f}_1\bar{z}+\bar{f}_2\bar{z}^2$, $\beta=b+G_1z+G_2z^2+\bar{g}_1\bar{z}+\bar{g}_2\bar{z}^2$ and $\phi=\alpha-\beta=c+A_1z+A_2z^2+\bar{B}_1\bar{z}+\bar{B}_2\bar{z}^2$. Suppose $S_{\alpha,\beta}$ is hyponormal. Then the following hold.

- (1) If $A_1 = A_2 = 0$, then $S_{\alpha,\beta}$ is nearly normal.
- (2) If $B_1 = B_2 = 0$, then $S_{\alpha,\beta}$ is nearly normal.
- (3) If $A_1 = B_1 = 0$, then $S_{\alpha,\beta}$ is nearly normal.
- (4) If $A_2 = B_2 = 0$, then $S_{\alpha,\beta}$ is nearly normal.
- (5) If $A_1 = B_2 = 0$, then $S_{\alpha,\beta}$ is nearly normal.
- (6) If $A_2 = B_1 = 0$, then $S_{\alpha,\beta}$ is nearly normal.

Proof. (1) Since $A_1 = A_2 = 0$, $|\bar{F}_1 u_0 + \bar{F}_2 u_1|^2 - |\bar{G}_1 u_0 + \bar{G}_2 u_1|^2 + (|F_2|^2 - |G_2|^2)|u_0|^2 = 0$. Hence by Theorem 6, $S_{\alpha,\beta}$ is nearly normal.

- (2) Since $B_1 = B_2 = 0$, $|g_1v_1 + g_2v_2|^2 |f_1v_1 + f_2v_2|^2 + (|g_2|^2 |f_2|^2)|v_1|^2 = 0$. Hence by Theorem 6, $S_{\alpha,\beta}$ is nearly normal.
- (3) When $A_1=B_1=0$, by (1) and (2) we may assume $A_2B_2\neq 0$. By Theorem 6, $G_2=\bar{c}G_1=f_2=f_1=0$. By Theorem 6

$$\{(c\bar{G}_1u_0 + c\bar{G}_2u_1 + A_1\bar{G}_2u_0) - \bar{f}_1(\bar{c}u_0 + \bar{A}_1u_1) - \bar{f}_2(\bar{c}u_1)\}v_1 + (cG_2u_0 + \bar{B}_1\bar{G}_1u_0 + \bar{B}_1\bar{G}_2u_1)\bar{v}_2 = 0$$

and hence $S_{\alpha,\beta}$ is nearly normal.

(4) When $A_2=B_2=0$ by (1) and (2) we may assume $A_1B_1\neq 0$. By Theorem 6 $B_1G_2=A_1f_2=0$ and so $G_2=f_2=0$. By Theorem 6

$$|\{(c\bar{G}_1 - \bar{f}_1\bar{c})u_0 - \bar{f}_1\bar{A}_1u_1\}\bar{v}_1 + \bar{B}_1\bar{G}_1u_0\bar{v}_2|^2 \leq (|F_1|^2 - |G_1|^2)(|g_1|^2 - |f_1|^2)|u_0|^2|v_1|^2.$$

As $|v_2| \to \infty$, $B_1G_1 = 0$ and so $G_1 = 0$. Hence $|(\bar{f}_1\bar{c}u_0 + \bar{f}_1\bar{A}_1u_1)\bar{v}_1|^2 \le |F_1|^2(|g_1|^2 - |f_1|^2)|u_0|^2|v_1|^2$. As $|u_1| \to \infty$, $f_1A_1 = 0$ and so $f_1 = 0$. Therefore by the definition $S_{\alpha,\beta}$ is nearly normal.

(5) When $A_1 = B_2 = 0$, by (1) and (2) we may assume $A_2B_1 \neq 0$. By Theorem 6 $G_2 = f_2 = f_1 = 0$. By Theorem 6

$$|c\bar{G}_1u_0\bar{v}_1 + \bar{B}_1\bar{G}_1u_0\bar{v}_2|^2 \le (|\bar{F}_1u_0 + \bar{F}_2u_1|^2 - |\bar{G}_1u_0|^2)|g_1v_1|^2.$$

As $|v_2| \to \infty$, $B_1G_1 = 0$ and so $G_1 = 0$. Hence by the definition $S_{\alpha,\beta}$ is nearly normal.

(6) When $A_2 = B_1 = 0$ by (1), (2) and (4) we may assume $A_1B_2 \neq 0$. By Theorem 6 $G_2 = \bar{c}G_1 = f_2 = 0$.

By Theorem 6,

$$|\bar{f}_1(\bar{c}u_0 + \bar{A}_1u_1)\bar{v}_1|^2 \le |F_1|^2|g_2|^2|u_0|^2|v_1|^2.$$

As $|u_1| \to \infty$, $f_1 A_1 = 0$ and so $f_1 = 0$. By the definition $S_{\alpha,\beta}$ is nearly normal

Corollary 10. Let $\alpha=a+F_1z+F_2z^2+\bar{f}_1\bar{z}+\bar{f}_2\bar{z}^2,\ \beta=b+G_1z+G_2z^2+\bar{g}_1\bar{z}+g_2\bar{z}^2$ and $\phi=\alpha-\beta=c+A_1z+A_2z^2+\bar{B}_1\bar{z}+\bar{B}_2\bar{z}^2$. Suppose $S_{\alpha,\beta}$ is hyponormal. When $c\neq 0$, if $A_1B_1A_2B_2=0$, then $S_{\alpha,\beta}$ is nearly normal. When c=0, if $B_1A_2B_2=0$, then $S_{\alpha,\beta}$ is nearly normal.

Proof. We will show that if $B_1A_2B_2=0$, then $S_{\alpha,\beta}$ is nearly normal. When $B_1=0$, by (2), (3) and (6) of Lemma 4 we may assume $A_1A_2B_2\neq 0$. By Theorem 6, $G_2=\bar{c}G_1=f_1=f_2=0$. This shows that $S_{\alpha,\beta}$ is nearly normal by Theorem 6.

When $A_2 = 0$, by (1), (4) and (6) of Lemma 4 we may assume $A_1B_1B_2 \neq 0$. By Theorem 6, $G_2 = \bar{c}G_1 = f_2 = 0$ and so Theorem 6 shows that

$$|f_1(\bar{c}u_0 + A_1u_1)\bar{v}_1 + B_1G_1u_0\bar{v}_2|^2 \le (|F_1|^2 - |G_1|^2)|u_0|^2(|g_1v_1 + g_2v_2|^2 - |f_1v_1|^2).$$

As $|u_1| \to \infty$, $f_1 A_1 = 0$ and so $f_1 = 0$. Hence

$$|B_1G_1|^2|v_2|^2 \le (|F_1|^2 - |G_1|^2)|g_1v_1 + g_2v_2|^2.$$

Choosing v_1 and v_2 , we can assume $g_1v_1 + g_2v_2 = 0$. This shows $S_{\alpha,\beta}$ is nearly normal.

When $B_2 = 0$, by (2), (4) and (5) of Lemma 4 we may assume $A_1 A_2 B_1 \neq 0$. By Theorem 6 $G_2 = f_1 = f_2 = 0$ and so Theorem 6 shows that

$$|c\bar{G}_1 u_0 \bar{v}_1 + \bar{B}_1 \bar{G}_1 u_0 \bar{v}_2|^2$$

$$\leq \{|\bar{F}_1 u_0 + \bar{F}_2 u_1|^2 + (|F_2|^2 - |G_1|^2)|u_0|^2\}(|g_1 v_1 + g_2 v_2|^2 + |g_2||v_1|^2).$$

Since $B_2 = 0$, $q_2 = 0$ and so

$$|c\bar{G}_1u_0\bar{v}_1 + \bar{B}_1\bar{G}_1u_0\bar{v}_2|^2 \le \{|\bar{F}_1u_0 + \bar{F}_2u_1|^2 + (|F_2|^2 - |G_1|^2)|u_0|^2\}|g_1|^2|v_1|^2.$$

As $|v_2| \to \infty$, $B_1G_1 = 0$ and so $G_1 = 0$ because $B_1 \neq 0$. This shows $S_{\alpha,\beta}$ is nearly normal.

We will show that if $A_1=0$ and $c\neq 0$, then $S_{\alpha,\beta}$ is nearly normal. By (1), (3) and (5) of Lemma 4 we may assume $A_2B_1B_2\neq 0$. By Theorem 6 $G_2=\bar{c}G_1=f_1=f_2=0$ and so Theorem 6 shows that

$$|B_1G_1u_0v_2|^2 \le (|\bar{F}_1u_0 + \bar{F}_2u_1|^2 - |\bar{G}_1|^2|u_0|^2 + |F_2|^2|u_0|^2)|g_2|^2(v_1|^2 + |v_2|^2).$$

Since
$$c \neq 0, G_1 = 0$$
 and so by Theorem 6 $S_{\alpha,\beta}$ is nearly normal.

Remark. In this section, we consider only very special case, that is, α and β are polynomials. However we can prove a few results only when $\alpha - \beta$ is a polynomial.

References

- M. B. Abrahamse, Subnormal Toeplitz operators and functions of bounded type, Duke Math. J. 43 (1976), no. 3, 597–604.
- [2] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/1964), 89–102.
- [3] C. C. Cowen, Hyponormality of Toeplitz operators, Proc. Amer. Math. Soc. 103 (1988), no. 3, 809–812.
- [4] R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415.
- [5] I. Gohberg and N. Krupnik, One-dimensional linear singular integral equations. Vol. II, translated from the 1979 German translation by S. Roch and revised by the authors, Operator Theory: Advances and Applications, 54, Birkhäuser Verlag, Basel, 1992.
- [6] C. X. Gu, A generalization of Cowen's characterization of hyponormal Toeplitz operators, J. Funct. Anal. 124 (1994), no. 1, 135–148.
- [7] I. S. Hwang, I. H. Kim, and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial symbols, Math. Ann. 313 (1999), no. 2, 247–261.
- [8] _____, Hyponormality of Toeplitz operators with polynomial symbols: an extremal case, Math. Nachr. 231 (2001), 25–38.
- [9] I. S. Hwang and W. Y. Lee, Hyponormality of Toeplitz operators with polynomial and symmetric-type symbols, Integral Equations Operator Theory **50** (2004), no. 3, 363–373.
- [10] T. Nakazi, Hyponormal Toeplitz operators and zeros of polynomials, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2425–2428.

- [11] T. Nakazi and K. Takahashi, Hyponormal Toeplitz operators and extremal problems of Hardy spaces, Trans. Amer. Math. Soc. 338 (1993), no. 2, 753–767.
- [12] T. Nakazi and T. Yamamoto, Normal singular integral operators with Cauchy kernel on L^2 , Integral Equations Operator Theory 78 (2014), no. 2, 233–248.
- [13] D. Sarason, Generalized interpolation in H^{∞} , Trans. Amer. Math. Soc. 127 (1967), 179–203.
- [14] K. H. Zhu, Hyponormal Toeplitz operators with polynomial symbols, Integral Equations Operator Theory 21 (1995), no. 3, 376–381.

TAKAHIKO NAKAZI HOKKAIDO UNIVERSITY SAPPORO 060-0810, JAPAN Email address: tnakazi70@gmail.com