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HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH
CAUCHY KERNEL ON L2

TAKAHIKO NAKAZI

ABSTRACT. For 1 < p < oo, let HP be the usual Hardy space on the unit
circle. When a and (3 are bounded functions, a singular integral operator
Sq,p is defined as the following: Sy g(f+g) = af+8g (f € HP,g € zHP).
When p = 2, we study the hyponormality of S, g when o and 3 are some
special functions.

1. Introduction

Let K be a Hilbert space and B(K) be the set of bounded linear operators
on K. For X in B(K), [X*, X] = X*X — XX* is called the selfcommutator of
X. If [X*, X] =0, then X is called a normal operator and if [X*, X] > 0, then
X is called a hyponormal operator. When H is a closed subspace of K, P is
the orthogonal projection from K to H and [ is the identity operator, if

PIX*,X|(I - P) = (I - P)IX",X]P = 0,

then X is called a D-operator. Of course, if X is a normal operator, then X is
a D-operator. However a hyponormal operator is not necessary a D-operator.
When a hyponormal X is a D-operator, we call it nearly normal.

There are a lot of papers about a normal operator and a hyponormal oper-
ator. We are interested in when a concrete operator is normal or hyponormal.
There are many researches when X is a Toeplitz operator, for example, [1], [2],
[3] and [11]. Recently Yamamoto and the author [12] started to study when X
is some singular integral operator. In this paper we continue to study such a
problem.

Let L? be the usual Lebesgue space and H? denotes the usual Hardy space
on the unit circle. For x,y in L?, put

27
(x,y) = / z(e)5(e')do /2.
0
Then by the inner product (,), L? and H? become Hilbert spaces.
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For o, 8 in L™ put
Sap=(a—pB)P+ Bl =aP+ (I —P),

where I is the identity operator on L? and P denotes the orthogonal projection
to H2. Then S, s is called a singular integral operator on L? and

2
where the integral is understood in the sense of Cauchy’s principal value (cf.
[5, Vol. I, p. 12]). Throughout this paper

a=a+F+f
and
B=b+G+yg,
where a,b € C and F, G, f,g € zH?. Moreover
p=a-f=c+A+B,

wherec=a—-bA=F—-Gand B=f—g.

Yamamoto and the author [12] describe completely the symbols « and 3 for
a normal S, g. In this paper, we study when S, g is a hyponormal operator or
a nearly normal operator.

In order to study S, 3, we need a few notations as the following:

T, =PM,P, T, = (I — P)M,(I — P)

and
H, = (I — P)M,P, H, = PM,(I — P).

Then T, is called a Toeplitz operator and H, is called a Hankel operator.
Moreover T =15, T} =T and H} = Hs.

[e3

2. Hyponormal operator

In this section, we show a necessary and sufficient condition for a hyponormal
Sa.3-

Theorem 1. S, g is hyponormal if and only ifﬁaHafﬁBHB >0 and HBﬁB*
HQI:I@ >0, and

(FaHa — g Hg)u,w] - [((HyHy — HaHa)o,0)| > [((TyHy — HaTy)u, )%,
where u is in H?> and v is in ZH?.
Proof. By Lemma 3.1 in [12], S, g is hyponormal if and only if

((HaHa — HgHg)u,u) + (HgHz — HoHa)v,v)

+ (TyHg — HoTy)u,v) + (TyHz — HoTz)u,v) > 0. (u € H*,v € 2H?)
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Hence if S, s is hyponormal, then as v = 0, ((HoHg — ﬁgHg)u7u> > 0 and as
u =0, ((Hgf[g — H,H,)v,v) > 0. Moreover then for any real number t,

(HoHs—HgHg)u, u)t> —2|((TyHg— HoTp)u, v)|t+((HgHz — Ho Hz )v, v) > 0.

This shows the ‘only if’ part. The proof is reversible and so the ‘if part’
follows. O

The following lemma is known by [6, Theorem 7] or the proof of [7, Lemma
4]. However we give a proof for completeness.

Lemma 1. (1) H,Hs > fIBHﬁ if and only if there exists k in H® such that
lklloo <1 and ka — ﬂ belongs to H>.

(2) HﬁHB > H,H, if and only if there exists h in H* such that ||h|ec < 1
and hf — a belongs to H*.

Proof. We show (2) because (1) can be shown similarly.
Suppose there exists a contractive function h in H* such that h3—a € H*>.
Then Hyp = H, and so H g = = H,. Hence

H.,Hsy = HhﬁHW = HpT), Ty Hz < HgHj

because T3 Ty < I, Hpg = HgT}, and H WE = ThHﬁ

Conversely suppose H /3H 5 > H, Hg. Then by a theorem of Douglas [4],
there exists a contraction B such that BHﬁ = Hg. Since TZHﬁ = HﬁTz and
T:Hs = HaT:, BHT, = BT:Hz and BHZT, = HT, = T:Hs = T:BHp.
Hence BT:Hz = T;BHp. Since T (RanHﬁ) C RanHp, BSz = S:B where S
is the restriction to of T% to the closure RanHﬂ By a theorem of Sarason [13]

= S}, for some h in H> with ||h]ls < 1. Hence Hy = ShHB =T,Hz = Hﬂh
ThUb hB — a belongs to H. O

Theorem 2. If S, s is hyponormal, then there exist k and h are in H> such
that || klloo <1 and ||hl|eo <1, and k& — 5 and hf — « belong to H*. Hence

(k—1)G+kA and (h—1)f —hB
belong to H.

Proof. 1t is clear by Theorem 1 and Lemma 1. (I

Theorem 3. Leta=a+F+f, B=b+G+g, v, =F+Gandy_ = f+g
where F, f,G and g are in zH*. If S g is hyponormal, then Ty, and Ty_ are
hyponormal.

Proof. If S, g is hyponormal, then by Theorem 2, there exist contractions k
and h in H* such that k& — § and h — a belong to H>®. Hence kF — G and
hg — f belong to H>*. Therefore k(F + G) — (G + F) and h(g + f) — (f + 9)
belong to H>. Now by [11, Lemma 1] T}, and T,_ are hyponormal. O
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If Tr-, & is hyponormal, then it is easy to see [T}, Tr] > [T, Tg). If F and G
are inner, then I —TpT; > I —T5T¢. Hence FH? D> GH?. Therefore G = QF
for some inner Q. If S, g is hyponormal, then by Theorem 3 [T}, Tr] > [T¢, T¢]
and [T}, Ty] > [T}‘, Ty]. Moreover if F, G, f and g are inner, then G = QF and
f = qg for some inner ) and gq.

When Tj, 5 is hyponormal, if F' and G are polynomials we have a lot of
papers [8], [9], [10], [11] and [14].

3. Analytic symbol

In this section we give sufficient conditions for S, s to be a hyponormal
operator.

Theorem 4. (1) S, is nearly normal if and only if H,H; — ﬁBHB >
0,HgHg — HoHa > 0 and TyHz — H, Ty = 0.

(2) If Sa,p is hyponormal, and H.,Hs; = gBHB or Hgffg = H,Hy, then
Sa.,p 15 nearly normal.

Proof. (1) It is clear by Theorem 1 and the definition of a nearly normal oper-
ator.

(2) It is clear by Theorem 1 and (1) and the definition of a nearly normal
operator. O

Corollary 1. If both o and 8 are in H™, then the following (1), (2) and (3)
are equivalent.

(1) Sa.,p is hyponormal.

(2) Sa,p is nearly normal.

(3) Ty g is hyponormal and T¢HB =0.

Proof. (1)=(2). Since Hﬁffg = H,Hgs = 0, by (2) of Theorem 4 S, g is nearly
normal.

(2)=(3). By (1) of Theorem 4 and by (1) of Lemma 1 there exists k in H>
such that ||k||s < 1 and ka — 3 € H*®. Hence k(a + ) — (a + ) belongs to
H®°. By [11, Lemma 1], T, 5 is hyponormal and T¢HB — H,Tz=0by (1) of
Theorem 4 and o € H* by hypothesis.

(3)=(1). By [11, Lemma 1] there exists k in H° such that ||k < 1 and
k(@ + B) — (a+ ) € H®. Hence ka — 3 be longs to H*. By (1) and (2) of
Lemma 1, and (1) of Theorem 4 S, g is nearly normal and so hyponormal. O

Corollary 2. If both & and 3 are in H®, then a result similar to Corollary 1
holds.

Lemma 2. (1) Put a = quta, = qats and ¢ = o — § = qt where qq,qs and
q are inner, and to,ts and t are outer. Suppose KerHp = QgzH? and Qp is
inner. Then HgTy =0 if and only if ¢ = Qpqo where qo is inner.
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(2) Put a = Gota,B = ggts, and ¢ =a—f = qt where 4o, g3 and q are
inner, and to,tg and t are outer. Suppose KerH, = Qn,H?. Then H.,T; =0
if and only if ¢ = Q.q0 where qo is inner.

Proof. (1) E[gqu = 0 if and only if TQ;(EI?Q) = qztH? C QpzH? by the defini-
tion of Q3. Hence this is equivalent to ¢o = Qg is inner.
(2) It can be proved as (1). O

Corollary 3. Suppose qo,qg and g are inner, and to,tg and t are outer.

(1) Put o = qota, S =qpts and ¢ = a — B = qt. Suppose KerI:IB = QpzH?>
and Qg are inner. Then S, g is nearly normal if and only if there exists a
contraction k in H>® such that k& — € H>® and ¢ = Qpqo where qo is inner.

(2) Put & = qata,3 = qptp and ¢ = a — B = qt. Suppose KerH, = Q. H?>
and Qo are inner. Then S, g is nearly normal if and only if there exists a
contraction h in H* such that hf —a € H*® and g = Qnq0 where qg is inner.

Proof. (1) Since H,Tjz = 0, if S, 5 is nearly normal, then by (1) of Theorem 4
ﬁBTJ> = 0. Now (1) of Lemma 1 and (1) of Lemma 2 show (1). The converse
is clear by (1) of Lemma 1 and (1) of Lemma 2 and (1) of Theorem 4.

(2) Since T¢HB = 0, if So g is nearly normal, then by (1) of Theorem 4
H,Tg = 0. Now (2) of Lemma 1 and (2) of Lemma 2 show (2). The converse
is clear by (2) of Lemma 1 and (2) of Lemma 2 and (1) of Theorem 4. O

In (1) of Corollary 3, Kerﬁg = {0} if and only if § = tg is a cyclic vector of
T; in H?. Similarly, in (2) of Corollary 3, KerH, = {0} if and only if a = #,
is a cyclic vector of T, in ZH?.

Corollary 4. (1) Let « and 8 be in H*. Suppose S is a cyclic vector of T
in H?. Then S, is nearly normal if and only if there exists a contraction k
in H® such that k& — B belongs to H>.

(2) Let & and B be in H>®. Suppose « is a cyclic vector osz in ZH?. Then
Sa.p is nearly normal if and only if there exists a contraction h in H such
that h3 — a belongs to H™.

Example I. (1) If o = Q(cqg+m) and 8 = cqp where @ and gg are inner and
m € H?, ggm € H> © QzH? and ¢ € C, then S, g is nearly normal.

(2) If « = X7_ 0,27 and 8 = anz, then S, 5 is nearly normal.

(3) Suppose a = ag + a1z, 8 = by + b1z and o # . Then S, g is nearly
normal if and only if a = ag and 8 = by.

Proof. (1) Since m € H? © QzH?, a belongs to H>. Moreover Qa — 3 = m.
On the other hand, since ggm € H? & QzH?,
a—fB=c(Q—1)gs+Qm =c(Q —1)gs + gss,

where s = Qggm € H™. In (1) of Corollary 3, if ¢ is the inner part of
g{c(Q — 1) + s} and Qg = g3, then S, g is nearly normal.
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(2) In (1), put @ = 2"71, g3 = z and a,, = ¢. Then a = Q(cz + m) and
m=a12""2+ -+ ap_22 + lp_1.
(3) By (1) of Corollary 3, it is clear. O

We can give a similar example to Example I using (2) of Corollary 3.

4. Polynomial symbol
In this section, we would like to study the hyponormality of S, g when
a = Z;-lzfnajzj and 8 = Z?:,nﬁjzj- In this special case, it is still difficult
to study the hyponormality. We study it essentially when n =1 and n = 2.
Lemma 3. Izeta:a+Fnz”+fn_”, 6*b+G 2"+ g2t and p=a— 3 =
c+ Apz"™ + Bpz" forn > 1. Ifu-E _ouj27, ¢ >mnand v =37 iz,
m >n+1, then the followings hold.
(1) (TyHgu,v) = Gn (cEg‘foluJT}n i+ B, E?foluﬂ)gn i)
(2) (HoaTgu,v) = fn(cE] o UiTn—j + Ap ZJ m D).
(3) (TyHpz — HaTg)u,v) = (Gpe— fne )E;L T G,LB”E;-:OIuj@gn_j
— fad, il n— ’U,j’Ugn j
(4) [ Haull® = [Fa23 55 uy .
(5) [Hzol® = gnl*S] 1|7JJ|2
Proof. Tt is easy to see this lemma by a calculation. O
Theorem 5. Let o = a+ F,2" + fnZ® B =b+4 Gpz"™ + gpz" and a — § =
c+ Apz"™ + Bpz". Then Sap is hyponormal if and only if for any complex
sequences {u;}"_o and {v; ?fll
[(Gre = F20)? < (1Ful* = [Gnl*)(l9al* = 1 fal?),
where [Fy| > |Gpl, [gn| > [fn| and Gy (fn 9n) = [n(Fn — Gp) =

Proof. By Theorem 1 and Lemma 3, S, g is hyponormal if and only if

n—1 n—1 2n—1
|(Gre — fn) Zujf)n,j + G, B, Zujz_)gn,j — fad, Z ujﬁgn,j\Q
7=0 3=0 j=n
n
< (IFal? = 1Gal)(gnl® = 1fal) Z g | { D sl ]
j=1
where |Fy,| > |G| and |gn| > |fn]. If H] nt1Vj # 0, then choosing {u;}7-
as like |E”:01uj172n j| — oo, we can get G, B =0 If Hznnluj # 0, then

choosing {v;}7_; as like |22” Y;T9p_j| — o0, we can get f, A, = 0. Hence
Sa,p is hyponormal if and only if

n—1
Gne— fn0) > 0|
j=0



HYPONORMAL SINGULAR INTEGRAL OPERATORS 793

< (| = 1Gal*)(lgnl* = 1£a]?) Zl%\z > ol
j=1

where G, B,, = fnAn, |Fn| > |Gy| and |g,| > |fn]|- This shows this theorem
because

O

n—1 n—1 n—1
1> P < D TP | D o
§=0 §=0 §=0

Corollary 5. Let o =a_1Z2+ap+ a1z and B =b_1Z+byg+bi1z. Then S, g is
hyponormal if and only if

[b1(ao — bo) — a—1(ag — bo)[* < (lar]* = [ba[*)([o-1]* = Ja—1[*),
where |ay| > |b1], |b=1| > |a—1] and by(a—1 —b_1) =a_1(a; — b1) = 0.
Corollary 6. Let a = a+ Fpz" + faZ®, B=b+Gpz" + g,z and o — 3 =
c+An 2"+ B, 2" Then Sqo p is hyponormal if and only if Sa. g is nearly normal.

Proof. By Theorem 5, if S, 5 is hyponormal, then G, (f, — gn) = fu(Fn —
Gn) = 0. Hence if F,, = G,,, then S, g is nearly normal. If f,, = 0, then G,,g,, =
0 and |Gcl*> < (|Fu|* = |Gnl?)|gn|?. This shows S, s is nearly normal. O

The following theorem is a generalization of Corollary 5. It is not beautiful
but will be useful and important.

Theorem 6. Let oo = a+Fiz+Fo22+ f17+ f222, B = b+G12+G22> +517+527
and p =a — B =c+ A1z + Axz2 4+ BiZ+ Byz%. Then Sa,p 15 hyponormal if
and only if

H{(cGrug + cGauy + A1Gaug) — fi(Cug + Ayur) — fo(Cuy)} oy
+ (cGaugp + B1Grug + B1Gauy ) |?

< A{(|Fruo + Fyur [ — [Ghug + Goua [*) + (| Fa|* — |Ga*)uo|*}
< {(lg1v1 + gava|® = | frv1 + faval?) + (lg2|* = [f2*) |01 *}

and |F1U0+F2U1|2 — |GluO+GQU1‘2+(|FQ|2 — ‘GQ|2)‘UO‘2 Z 0, |gl’l)1 +92U2|2*
|fror + fava*+ (lg2? — [ f2*)[v1]* > 0 for uj € C (j = 0,1) and v; € C (j =
1,2), where BoGo =0, B1Go+¢B2G1 =0, Asfo =0, Ao f1 =0, and A1 fo = 0.

Proof. Note that
[Haul® = |Hpull* = (|Fiuo + Four[* — |Grug + Gour [*) + (|Fo]? — |G2[*) uo|?
and
|Hgol|* = [ Havl* = (|g1v1 + gaval|* — [ fror + faval*) + (Iga2* — [ f2l*)|va .
Moreover
(TyHgu,v) = (cGrug + cGaus + A1Gaug)v1 + (cGaug + B1Grug + B1Gauy )
+ (B1Gaug + cBaGiug + c¢BaGauy )tz + (BaGaug) vy
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and
(HoTzu,v) = {f1(Cuo + Aruy + Aguz) + fo(Cuy + Ayug + Asus)}oy
+ fa(Cug + Ayuy + Agus)vs.

Theorem 1 and the proof of Theorem 5 show the theorem. For example, as
|vg] = 00 we BoGo = 0 and as |vs| — oo we get B1Go + ¢ByG1 = 0. Similarly
as |ug| — oo we get foAs = 0 and as |us| = oo we get f1 Ay = foA; = 0. O

Corollary 7. When c =0, 5,3 is hyponormal if and only if
|A1(Gaug — fru1)vr + B1(Grug + Ga)va |
< A{|Fiuo + Four [* = |Grug + Goua [ + (| Fa|* = |Ga*) uo|*}
X {(lg101 + gava|* — | fron + faval? + (lg2/?| fal*[02 [}
and |Frug + Fouy |* — |Grug + Gour |2 + (| Fo|? — |Ga|?) [uo|? > 0, |g1v1 + gova|? —

| fiv1 + fova|? + (lg2]* = [ f2]?)|v1]? > 0 where BoGy = B1Go = Asfa = Asfy =
A1f2 =0 and Uy Vj eC (Z = 0,1; j = 1,2)

Corollaries 8 and 9 give examples that are hyponormal but not nearly normal
and Corollary 10 give examples that are nearly normal.

Corollary 8. When A1 =0, AaB1By # 0,5, 3 s hyponormal if and only if
|cGruoti+B1Grugte|” < (|Fruo+Fau [+ B[ uol*) (|g1v1+g2va| *+g2[*[01?),
where Go = f1 = fa=0 and u;,v; € C (1=0,1; j =1,2).

Proof. If S, g is hyponormal, then Theorem 6 shows and so G2 = fi = fa =0
the ‘only if’ part. Conversely the ‘if’ part is clear. O

Example II. Let a = a + Fiz + Fyz? and f=b+ G12 + §1Z + §22°.
(1) If S, g is hyponormal, then |(a—b)G1+91G1|* < (|F1+Fao?+|Fa|?) (g1 +
g2]? + |g2]?). If S, is nearly normal, then (a — b)Gy + g1G1 = 0.
(2)fa=1+z+2%and B =2+ z+ 22, then S, s is hyponormal but not
nearly normal.

Proof. (1) In Corollary 8, as ug = u; = v1 = vy = 1, we can get (1).

(2) In Corollary 8, c = By =1 and F} = F, = Gy = g1 = g2 = 1. Hence
Sa.p is hyponormal if and only if |ugD; + uov2|® < (Jup + u1|* + |uol®)(Jvr +
va]? 4 |v1|?). Hence S, s is hyponormal and by (1) S, s is not nearly normal
because (a — b)G1 + g1G1 = 2. O

Corollary 9. Suppose A1 Ay B1By # 0. Then Sy g is hyponormal if and only
if

[B1G1PJvz? < (|Fo]? = |G1?)(|g1v1 + g2val* + g2l [u1 ),
where Go = ¢G1 = fa = fi =0 and v; (j =1,2).
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Proof. If S, 3 is hyponormal, by Theorem 6, Gy = ¢G1 = fo = fi = 0. Hence
by Theorem 6,

|B1G1 [ |uol[v2]? < {|Frug + Four|* + (| Fa|* — |G1[*)|uol*}
x (lg1vr + g2v2]? + [g2][v1]?).-

Since F; # 0, if we choose u; as —F1U0/F2, then the ‘only if’ part of corollary
follows. The ‘if’ part is clear. U

Example III. Let o = a+ Fiz + Fy2% and = a + G12 + §1Z + G222 where
F2 7é O7 gi192 7é 0, |F2| 7é ‘G1| and F1 7& Gl. Then
(1) Sa,p is hyponormal if and only if

2 2
‘G1| < ’t+'92
g

g2
|Fo|? —|Gy]? — 1

2
+ [t
g1

for any t € C. Moreover S, g is not nearly normal.
(2) When g1 = g2, S, is hyponormal if and only if 2|G4|* < |Fy|?.

)

Proof. (1) By Theorem 6, S, g is hyponormal if and only if

2

V1
+ [g2|?

V2

l1G1[* < (|Fa)® = |G1]?) (

U1
g1— + 92
V2

Put ¢t = v1/ve. Then

2 2
‘G1|2 ’ 92 2192
< B g |2
Bl — [Cu? o) TG

for any t € C and S, g is not nearly normal.
(2) When g1 = g2, by (1) Sa g is hyponormal if and only if

G4]?

2 2
e -G = il

for any t € C. Since inf(|t + 1|2 + |¢t|?) = 1/4, Sa.p is hyponormal if and only if
1G] < B2 - |G -

Lemma 4. Let o« = a4+ Fiz2+Fo2? + f12+ f222, B = b+ G12+Go22 +§1 2+ G2 72
and ¢ = — B =c+ A1z + Ayz? + B1Z + Byz%. Suppose Sa,p is hyponormal.
Then the following hold.
(1) If A1 = Ay =0, then S, g is nearly normal.
2) If By = By =0, then Sy 3 is nearly normal.
) If Ay = By =0, then S, g is nearly normal.
) If Ay = By =0, then S, g is nearly normal.
) If Ay = B, =0, then S, g is nearly normal.
) If Ay = By =0, then S, g is nearly normal.
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Proof. (1) Since Ay = Ay = 0, |F1U0 + F2U1|2 - |G1U0 + GQU1|2 + (|F2|2 -
|G2|?)|ug|* = 0. Hence by Theorem 6, S, s is nearly normal.

(2) Since By = By = 0, |g101+g202[* = [ frv1 + fova[* + (|g2[* = | fo|*) [1]* = 0.
Hence by Theorem 6, S, g is nearly normal.

(3) When A; = B; = 0, by (1) and (2) we may assume A2By # 0. By
Theorem 6, Go = ¢G, = fo = f1 = 0. By Theorem 6

{(Cél’ll,o + CGQUl + Alég’UJQ) — fl(EUO + fllul) — f_g(éul)}?)l
+ (CGQ’LLU + Bléﬂbo + Blégu1)172 =0

and hence S, s is nearly normal.
(4) When Ay = By = 0 by (1) and (2) we may assume A;B; # 0. By
Theorem 6 B1Go = A1 fo =0 and so G2 = fo = 0. By Theorem 6

{(cG1—fre)uo— frAyur }o1+B1Gruota|* < (|F1 2= |G1*) (|91 [P = f1]?) [uo|* |01 .

As |va| — oo, BiG1 = 0 and so G; = 0. Hence |(ficug + fiAijui)v,|? <
[F112 (19117 = [f1]*)[uol*[v1[?. As [ur| = oo, fiAd; =0 and so fi = 0. Therefore
by the definition S, s is nearly normal.

(5) When 4; = By = 0, by (1) and (2) we may assume A2B; # 0. By
Theorem 6 G2 = fo = f1 = 0. By Theorem 6

lcGruovr + B1G1U0?72|2 < (|Fyug + F2u1|2 - |G1U0|2)|9101|2-

As |vg| = 00, B1G1 = 0 and so G; = 0. Hence by the definition S, g is nearly
normal.

(6) When A = By =0 by (1), (2) and (4) we may assume Ay By # 0. By
Theorem 6 Gy = ¢G, = fo = 0.

By Theorem 6,

A

| f1(Euo + Arur)v1|? < [F1I?[g2)? uo | ve]?.

As |lu1| — o0, f141 = 0 and so f; = 0. By the definition S, g is nearly
normal. O

Corollary 10. Let o = a + Fiz + Fp2% + flé + fQZZ, B=b+Giz+ Gz +
GiIZ+ g2 and ¢ = a— 8 = c+ A1z + Ag2? + B1Z + BaZ%. Suppose Sa.p
is hyponormal. When ¢ # 0, if A1B1A2By = 0, then So. g is nearly normal.
When ¢ =0, if B1AsBy =0, then S, g is nearly normal.

Proof. We will show that if B1A3;By = 0, then S, g is nearly normal. When
B; =0, by (2), (3) and (6) of Lemma 4 we may assume A;A3By # 0. By
Theorem 6, G2 = ¢G1 = f1 = f» = 0. This shows that S, g is nearly normal
by Theorem 6.

When A; =0, by (1), (4) and (6) of Lemma 4 we may assume A; By B2 # 0.
By Theorem 6, Go = ¢G; = fo = 0 and so Theorem 6 shows that

| f1(Cug + Aruy)vy +BlG1U0172|2 < (|Fl|2 - |Gl\2)|uo|2(|glv1 Jrg2112|2 - |f1U1|2)-
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As Juy| = o0, f141 =0 and so f; = 0. Hence
|B1G1 P [va]? < (IF1[* = |G *)|grvn + gaval®.

Choosing v; and vy, we can assume g;v; + g2v2 = 0. This shows S, g is nearly
normal.

When B = 0, by (2), (4) and (5) of Lemma 4 we may assume A; Ao By # 0.
By Theorem 6 G2 = f; = fo = 0 and so Theorem 6 shows that

|cG 1oty 4+ By Grugts|?
< A|Fruo + Fyur | + (|B* = |G1[*)[uol*} (|g101 + g2va|* + |g2][o1 ).
Since B =0, g2 = 0 and so
|cGrugty + BiGrugta|* < {|Fiug + Fyur|* + (|Faf* — |G1[*)[uol*} g1 [ [vr]*.

As |vg] = 00, B1G; = 0 and so G; = 0 because By # 0. This shows S, g is
nearly normal.

We will show that if A; = 0 and ¢ # 0, then S, g is nearly normal. By
(1), (3) and (5) of Lemma 4 we may assume A;Bi;Bs # 0. By Theorem 6
Gy =¢Gy = f1 = fo = 0 and so Theorem 6 shows that

|BiGrugva|* < ([Frug + Faui|* = |[GrlPluol® + [Fo[?[uol*)]gal? (v1]? + [v2]?).
Since ¢ # 0,G; = 0 and so by Theorem 6 S, g is nearly normal. O

Remark. In this section, we consider only very special case, that is, a and
are polynomials. However we can prove a few results only when o — (5 is a
polynomial.
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