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HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH

CAUCHY KERNEL ON L2

Takahiko Nakazi

Abstract. For 1 ≤ p ≤ ∞, let Hp be the usual Hardy space on the unit

circle. When α and β are bounded functions, a singular integral operator
Sα,β is defined as the following: Sα,β(f+ḡ) = αf+βḡ (f ∈ Hp, g ∈ zHp).

When p = 2, we study the hyponormality of Sα,β when α and β are some
special functions.

1. Introduction

Let K be a Hilbert space and B(K) be the set of bounded linear operators
on K. For X in B(K), [X∗, X] = X∗X −XX∗ is called the selfcommutator of
X. If [X∗, X] = 0, then X is called a normal operator and if [X∗, X] ≥ 0, then
X is called a hyponormal operator. When H is a closed subspace of K, P is
the orthogonal projection from K to H and I is the identity operator, if

P [X∗, X](I − P ) = (I − P )[X∗, X]P = 0,

then X is called a D-operator. Of course, if X is a normal operator, then X is
a D-operator. However a hyponormal operator is not necessary a D-operator.
When a hyponormal X is a D-operator, we call it nearly normal.

There are a lot of papers about a normal operator and a hyponormal oper-
ator. We are interested in when a concrete operator is normal or hyponormal.
There are many researches when X is a Toeplitz operator, for example, [1], [2],
[3] and [11]. Recently Yamamoto and the author [12] started to study when X
is some singular integral operator. In this paper we continue to study such a
problem.

Let L2 be the usual Lebesgue space and H2 denotes the usual Hardy space
on the unit circle. For x, y in L2, put

〈x, y〉 =

∫ 2π

0

x(eiθ)ȳ(eiθ)dθ/2π.

Then by the inner product 〈, 〉, L2 and H2 become Hilbert spaces.
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For α, β in L∞ put

Sα,β = (α− β)P + βI = αP + β(I − P ),

where I is the identity operator on L2 and P denotes the orthogonal projection
to H2. Then Sα,β is called a singular integral operator on L2 and

(Sα,βf)(z) =
α(z) + β(z)

2
f(z) +

α(z)− β(z)

2

1

πi

∫
f(ξ)

ξ − z
dζ,

where the integral is understood in the sense of Cauchy’s principal value (cf.
[5, Vol. I, p. 12]). Throughout this paper

α = a+ F + f̄

and

β = b+G+ ḡ,

where a, b ∈ C and F,G, f, g ∈ zH2. Moreover

φ = α− β = c+A+ B̄,

where c = a− b, A = F −G and B = f − g.
Yamamoto and the author [12] describe completely the symbols α and β for

a normal Sα,β . In this paper, we study when Sα,β is a hyponormal operator or
a nearly normal operator.

In order to study Sα,β , we need a few notations as the following:

Tα = PMαP, T̃α = (I − P )Mα(I − P )

and

Hα = (I − P )MαP, H̃α = PMα(I − P ).

Then Tα is called a Toeplitz operator and Hα is called a Hankel operator.
Moreover T ∗α = Tᾱ, T̃

∗
α = T̃ᾱ and H∗α = H̃ᾱ.

2. Hyponormal operator

In this section, we show a necessary and sufficient condition for a hyponormal
Sα,β .

Theorem 1. Sα,β is hyponormal if and only if H̃αHᾱ−H̃βHβ̄ ≥ 0 and HβH̃β̄−
HαH̃ᾱ ≥ 0, and

|〈(H̃αHᾱ − H̃βHβ̄)u, u〉| · |〈(HβH̃β̄ −HαH̃ᾱ)v, v〉| ≥ |〈(T̃φHβ̄ −HαTφ̄)u, v〉|2,

where u is in H2 and v is in z̄H̄2.

Proof. By Lemma 3.1 in [12], Sα,β is hyponormal if and only if

〈(H̃αHᾱ − H̃βHβ̄)u, u〉+ 〈(HβH̃β̄ −HαH̃ᾱ)v, v〉

+ 〈(T̃φHβ̄ −HαTφ̄)u, v〉+ 〈(T̃φHβ̄ −HαT̃φ̄)u, v〉 ≥ 0. (u ∈ H2, v ∈ z̄H̄2)
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Hence if Sα,β is hyponormal, then as v = 0, 〈(H̃αHᾱ − H̃βHβ̄)u, u〉 ≥ 0 and as

u = 0, 〈(HβH̃β̄ −HαH̃α)v, v〉 ≥ 0. Moreover then for any real number t,

〈(H̃αHᾱ−H̃βHβ̄)u, u〉t2−2|〈(T̃φHβ̄−HαTφ)u, v〉|t+〈(HβH̃β̄−HαH̃ᾱ)v, v〉 ≥ 0.

This shows the ‘only if’ part. The proof is reversible and so the ‘if part’
follows. �

The following lemma is known by [6, Theorem 7] or the proof of [7, Lemma
4]. However we give a proof for completeness.

Lemma 1. (1) H̃αHᾱ ≥ H̃βHβ̄ if and only if there exists k in H∞ such that

‖k‖∞ ≤ 1 and kᾱ− β̄ belongs to H∞.

(2) HβH̃β̄ ≥ HαH̃ᾱ if and only if there exists h in H∞ such that ‖h‖∞ ≤ 1
and hβ − α belongs to H∞.

Proof. We show (2) because (1) can be shown similarly.
Suppose there exists a contractive function h in H∞ such that hβ−α ∈ H∞.

Then Hhβ = Hα and so H̃hβ = H̃ᾱ. Hence

HαH̃ᾱ = HhβH̃hβ = HβThTh̄H̃β̄ ≤ HβH̃β̄

because ThTh̄ ≤ I, Hhβ = HβTh and H̃hβ = Th̄H̃β̄ .

Conversely suppose HβH̃β̄ ≥ HαH̃ᾱ. Then by a theorem of Douglas [4],

there exists a contraction B such that BH̃β̄ = H̃ᾱ. Since Tz̄H̃β̄ = H̃β̄T̃z and

Tz̄H̃ᾱ = H̃ᾱT̃z̄, BH̃β̄T̃z = BTz̄H̃β̄ and BH̃β̄T̃z = H̃ᾱT̃z = Tz̄H̃ᾱ = Tz̄BH̃β̄ .

Hence BTz̄H̃β̄ = Tz̄BH̃β̄ . Since Tz̄ (RanH̃β̄) ⊆ RanH̃β̄ , BSz̄ = Sz̄B where Sz̄
is the restriction to of Tz̄ to the closure RanH̃β̄ . By a theorem of Sarason [13],

B∗ = Sh for some h inH∞ with ‖h‖∞ ≤ 1. Hence H̃ᾱ = Sh̄H̃β̄ = Th̄H̃β̄ = H̃β̄h̄.
Thus hβ − α belongs to H∞. �

Theorem 2. If Sα,β is hyponormal, then there exist k and h are in H∞ such
that ‖k‖∞ ≤ 1 and ‖h‖∞ ≤ 1, and kᾱ− β̄ and hβ − α belong to H∞. Hence

(k − 1)Ḡ+ kĀ and (h− 1)f̄ − hB̄

belong to H∞.

Proof. It is clear by Theorem 1 and Lemma 1. �

Theorem 3. Let α = a+F + f̄ , β = b+G+ ḡ, ψ+ = F + Ḡ and ψ− = f + ḡ
where F, f,G and g are in zH∞. If Sα,β is hyponormal, then Tψ+

and Tψ− are
hyponormal.

Proof. If Sα,β is hyponormal, then by Theorem 2, there exist contractions k
and h in H∞ such that kᾱ− β̄ and hβ − α belong to H∞. Hence kF̄ − Ḡ and
hḡ − f̄ belong to H∞. Therefore k(F̄ +G)− (Ḡ+ F ) and h(ḡ + f)− (f̄ + g)
belong to H∞. Now by [11, Lemma 1] Tψ+

and Tψ− are hyponormal. �
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If TF+Ḡ is hyponormal, then it is easy to see [T ∗F , TF ] ≥ [T ∗G, TG]. If F and G
are inner, then I−TFT ∗F ≥ I−TGT ∗G. Hence FH2 ⊇ GH2. Therefore G = QF
for some inner Q. If Sα,β is hyponormal, then by Theorem 3 [T ∗F , TF ] ≥ [T ∗G, TG]
and [T ∗g , Tg] ≥ [T ∗f , Tf ]. Moreover if F,G, f and g are inner, then G = QF and
f = qg for some inner Q and q.

When TF+Ḡ is hyponormal, if F and G are polynomials we have a lot of
papers [8], [9], [10], [11] and [14].

3. Analytic symbol

In this section we give sufficient conditions for Sα,β to be a hyponormal
operator.

Theorem 4. (1) Sα,β is nearly normal if and only if H̃αHᾱ − H̃βHβ̄ ≥
0, HβH̃β̄ −HαH̃ᾱ ≥ 0 and T̃φHβ̄ −HαTφ̄ = 0.

(2) If Sα,β is hyponormal, and H̃αHᾱ = H̃βHβ̄ or HβH̃β̄ = HαH̃ᾱ, then
Sα,β is nearly normal.

Proof. (1) It is clear by Theorem 1 and the definition of a nearly normal oper-
ator.

(2) It is clear by Theorem 1 and (1) and the definition of a nearly normal
operator. �

Corollary 1. If both α and β are in H∞, then the following (1), (2) and (3)
are equivalent.

(1) Sα,β is hyponormal.
(2) Sα,β is nearly normal.

(3) Tα+β̄ is hyponormal and T̃φHβ̄ = 0.

Proof. (1)⇒(2). Since HβH̃β̄ = HαH̃ᾱ = 0, by (2) of Theorem 4 Sα,β is nearly
normal.

(2)⇒(3). By (1) of Theorem 4 and by (1) of Lemma 1 there exists k in H∞

such that ‖k‖∞ ≤ 1 and kᾱ − β̄ ∈ H∞. Hence k(ᾱ + β) − (α + β̄) belongs to

H∞. By [11, Lemma 1], Tα+β̄ is hyponormal and T̃φHβ̄ −HαTφ̄ = 0 by (1) of
Theorem 4 and α ∈ H∞ by hypothesis.

(3)⇒(1). By [11, Lemma 1] there exists k in H∞ such that ‖k‖∞ ≤ 1 and
k(ᾱ + β) − (α + β̄) ∈ H∞. Hence kᾱ − β̄ be longs to H∞. By (1) and (2) of
Lemma 1, and (1) of Theorem 4 Sα,β is nearly normal and so hyponormal. �

Corollary 2. If both ᾱ and β̄ are in H∞, then a result similar to Corollary 1
holds.

Lemma 2. (1) Put α = qαtα, β = qβtβ and φ = α − β = qt where qα, qβ and

q are inner, and tα, tβ and t are outer. Suppose KerH̃β = Q̄β z̄H̄
2 and Qβ is

inner. Then H̃βT̃φ̄ = 0 if and only if q = Qβq0 where q0 is inner.
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(2) Put ᾱ = qαtα, β̄ = qβtβ, and φ̄ = ᾱ − β̄ = qt where qα, qβ and q are
inner, and tα, tβ and t are outer. Suppose KerHα = QαH

2. Then HαTφ̄ = 0
if and only if q = Qαq0 where q0 is inner.

Proof. (1) H̃βT̃φ̄ = 0 if and only if T̃φ̄(z̄H̄2) = q̄z̄t̄H̄2 ⊆ Q̄β z̄H̄
2 by the defini-

tion of Qβ . Hence this is equivalent to q0 = Q̄βq is inner.
(2) It can be proved as (1). �

Corollary 3. Suppose qα, qβ and q are inner, and tα, tβ and t are outer.

(1) Put α = qαtα, β = qβtβ and φ = α− β = qt. Suppose KerH̃β = Q̄β z̄H̄
2

and Qβ are inner. Then Sα,β is nearly normal if and only if there exists a
contraction k in H∞ such that kᾱ− β̄ ∈ H∞ and q = Qβq0 where q0 is inner.

(2) Put ᾱ = qαtα, β̄ = qβtβ and φ̄ = ᾱ − β̄ = qt. Suppose KerHα = QαH
2

and Qα are inner. Then Sα,β is nearly normal if and only if there exists a
contraction h in H∞ such that hβ − α ∈ H∞ and q = Qαq0 where q0 is inner.

Proof. (1) Since HαTφ̄ = 0, if Sα,β is nearly normal, then by (1) of Theorem 4

H̃βT̃φ̄ = 0. Now (1) of Lemma 1 and (1) of Lemma 2 show (1). The converse
is clear by (1) of Lemma 1 and (1) of Lemma 2 and (1) of Theorem 4.

(2) Since T̃φHβ̄ = 0, if Sα,β is nearly normal, then by (1) of Theorem 4
HαTφ̄ = 0. Now (2) of Lemma 1 and (2) of Lemma 2 show (2). The converse
is clear by (2) of Lemma 1 and (2) of Lemma 2 and (1) of Theorem 4. �

In (1) of Corollary 3, KerH̃β = {0} if and only if β = tβ is a cyclic vector of
Tz̄ in H2. Similarly, in (2) of Corollary 3, KerHα = {0} if and only if α = t̄α
is a cyclic vector of T̃z in z̄H̄2.

Corollary 4. (1) Let α and β be in H∞. Suppose β is a cyclic vector of Tz̄
in H2. Then Sα,β is nearly normal if and only if there exists a contraction k
in H∞ such that kᾱ− β̄ belongs to H∞.

(2) Let ᾱ and β̄ be in H∞. Suppose α is a cyclic vector of T̃z in z̄H̄2. Then
Sα,β is nearly normal if and only if there exists a contraction h in H∞ such
that hβ − α belongs to H∞.

Example I. (1) If α = Q(cqβ + m̄) and β = cqβ where Q and qβ are inner and
m ∈ H2, qβm ∈ H2 	QzH2 and c ∈ C, then Sα,β is nearly normal.

(2) If α = Σnj=1ajz
j and β = anz, then Sα,β is nearly normal.

(3) Suppose α = a0 + a1z, β = b0 + b1z and α 6= β. Then Sα,β is nearly
normal if and only if α = a0 and β = b0.

Proof. (1) Since m ∈ H2 	QzH2, α belongs to H∞. Moreover Qᾱ − β̄ = m.
On the other hand, since qβm ∈ H2 	QzH2,

α− β = c(Q− 1)qβ +Qm̄ = c(Q− 1)qβ + qβs,

where s = Qq̄βm̄ ∈ H∞. In (1) of Corollary 3, if q is the inner part of
qβ{c(Q− 1) + s} and Qβ = qβ , then Sα,β is nearly normal.
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(2) In (1), put Q = zn−1, qβ = z and an = c. Then α = Q(cz + m̄) and
m = ā1z

n−2 + · · ·+ ān−2z + ān−1.
(3) By (1) of Corollary 3, it is clear. �

We can give a similar example to Example I using (2) of Corollary 3.

4. Polynomial symbol

In this section, we would like to study the hyponormality of Sα,β when
α =

∑n
j=−nαjz

j and β =
∑n
j=−nβjz

j . In this special case, it is still difficult
to study the hyponormality. We study it essentially when n = 1 and n = 2.

Lemma 3. Let α = a+ Fnz
n + f̄nz̄

n, β = b+Gnz
n + ḡnz̄

n and φ = α− β =
c + Anz

n + B̄nz̄
n for n ≥ 1. If u = Σ`j=0ujz

j, ` ≥ n and v = Σmj=1vj z̄
j,

m ≥ n+ 1, then the followings hold.

(1) 〈T̃φHβ̄u, v〉 = Ḡn(cΣn−1
j=0 uj v̄n−j + B̄nΣn−1

j=0 uj v̄2n−j).

(2) 〈HαTφ̄u, v〉 = f̄n(c̄Σn−1
j=0 uj v̄n−j + ĀnΣ2n−1

j=n uj v̄2n−j).

(3) 〈(T̃φHβ̄ −HαTφ̄)u, v〉 = (Ḡnc− f̄nc̄)Σn−1
j=0 uj v̄n−j+ ḠnB̄nΣn−1

j=0 uj v̄2n−j

− f̄nĀnΣ2n−1
j=n uj v̄2n−j .

(4) ‖Hᾱu‖2 = |Fn|2Σn−1
j=0 |uj |2.

(5) ‖H̃β̄v‖2 = |gn|2Σnj=1|vj |2.
Proof. It is easy to see this lemma by a calculation. �

Theorem 5. Let α = a + Fnz
n + f̄nz̄

n, β = b + Gnz
n + ḡnz̄

n and α − β =
c + Anz

n + B̄nz̄
n. Then Sα,β is hyponormal if and only if for any complex

sequences {uj}nj=0 and {vj}n+1
j=1

|(Ḡnc− f̄nc̄)|2 ≤ (|Fn|2 − |Gn|2)(|gn|2 − |fn|2),

where |Fn| ≥ |Gn|, |gn| ≥ |fn| and Gn(fn − gn) = fn(Fn −Gn) = 0.

Proof. By Theorem 1 and Lemma 3, Sα,β is hyponormal if and only if

|(Ḡnc− f̄nc̄)
n−1∑
j=0

uj v̄n−j + ḠnB̄n

n−1∑
j=0

uj v̄2n−j − f̄nĀn
2n−1∑
j=n

uj v̄2n−j |2

≤ (|Fn|2 − |Gn|2)(|gn|2 − |fn|2)

n−1∑
j=0

|uj |2
 n∑

j=1

|vj |2
 ,

where |Fn| ≥ |Gn| and |gn| ≥ |fn|. If
∏2n
j=n+1 vj 6= 0, then choosing {uj}n−1

j=0

as like |Σn−1
j=0 uj v̄2n−j | → ∞, we can get ḠnB̄n = 0. If

∏2n−1
j=n uj 6= 0, then

choosing {vj}nj=1 as like |Σ2n−1
j=n uj v̄2n−j | → ∞, we can get fnAn = 0. Hence

Sα,β is hyponormal if and only if

|(Ḡnc− f̄nc̄)
n−1∑
j=0

uj v̄n−j |2
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≤ (|Fn|2 − |Gn|2)(|gn|2 − |fn|2)

n−1∑
j=0

|uj |2
 n∑

j=1

|vj |2
 ,

where GnBn = fnAn, |Fn| ≥ |Gn| and |gn| ≥ |fn|. This shows this theorem
because

|
n−1∑
j=0

uj v̄n−j |2 ≤

n−1∑
j=0

|uj |2
n−1∑

j=0

|v̄n−j |2
 .

�

Corollary 5. Let α = a−1z̄+ a0 + a1z and β = b−1z̄+ b0 + b1z. Then Sα,β is
hyponormal if and only if

|b̄1(a0 − b0)− a−1(a0 − b0)|2 ≤ (|a1|2 − |b1|2)(|b−1|2 − |a−1|2),

where |a1| ≥ |b1|, |b−1| ≥ |a−1| and b1(a−1 − b−1) = a−1(a1 − b1) = 0.

Corollary 6. Let α = a + Fnz
n + f̄nz̄

n, β = b + Gnz
n + ḡnz̄

n and α − β =
c+Anz

n+B̄nz̄
n. Then Sα,β is hyponormal if and only if Sα,β is nearly normal.

Proof. By Theorem 5, if Sα,β is hyponormal, then Gn(fn − gn) = fn(Fn −
Gn) = 0. Hence if Fn = Gn, then Sα,β is nearly normal. If fn = 0, then Gnḡn =
0 and |Ḡnc|2 ≤ (|Fn|2 − |Gn|2)|gn|2. This shows Sα,β is nearly normal. �

The following theorem is a generalization of Corollary 5. It is not beautiful
but will be useful and important.

Theorem 6. Let α = a+F1z+F2z
2+f̄1z̄+f̄2z̄

2, β = b+G1z+G2z
2+ḡ1z̄+ḡ2z̄

2

and φ = α − β = c + A1z + A2z
2 + B̄1z̄ + B̄2z̄

2. Then Sα,β is hyponormal if
and only if

|{(cḠ1u0 + cḠ2u1 +A1Ḡ2u0)− f̄1(c̄u0 + Ā1u1)− f̄2(c̄u1)}v̄1

+ (cḠ2u0 + B̄1Ḡ1u0 + B̄1Ḡ2u1)v̄2|2

≤ {(|F̄1u0 + F̄2u1|2 − |Ḡ1u0 + Ḡ2u1|2) + (|F̄2|2 − |Ḡ2|2)|u0|2}
× {(|g1v1 + g2v2|2 − |f1v1 + f2v2|2) + (|g2|2 − |f2|2)|v1|2}

and |F̄1u0 + F̄2u1|2−|Ḡ1u0 + Ḡ2u1|2 +(|F̄2|2−|Ḡ2|2)|u0|2 ≥ 0, |g1v1 +g2v2|2−
|f1v1 + f2v2|2+ (|g2|2 − |f2|2)|v1|2 ≥ 0 for uj ∈ C (j = 0, 1) and vj ∈ C (j =
1, 2), where B2G2 = 0, B1G2 + c̄B2G1 = 0, A2f2 = 0, A2f1 = 0, and A1f2 = 0.

Proof. Note that

‖Hᾱu‖2 − ‖Hβ̄u‖2 = (|F̄1u0 + F̄2u1|2 − |Ḡ1u0 + Ḡ2u1|2) + (|F̄2|2 − |Ḡ2|2)|u0|2

and

‖H̃β̄v‖2 − ‖H̃ᾱv‖2 = (|g1v1 + g2v2|2 − |f1v1 + f2v2|2) + (|g2|2 − |f2|2)|v1|2.
Moreover

〈T̃φHβ̄u, v〉 = (cḠ1u0 + cḠ2u1 +A1Ḡ2u0)v̄1 + (cḠ2u0 + B̄1Ḡ1u0 + B̄1Ḡ2u1)v̄2

+ (B̄1Ḡ2u0 + cB̄2Ḡ1u0 + cB̄2Ḡ2u1)v̄3 + (B̄2Ḡ2u0)v̄4
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and

〈HαTφ̄u, v〉 = {f̄1(c̄u0 + Ā1u1 + Ā2u2) + f̄2(c̄u1 + Ā1u2 + Ā2u3)}v̄1

+ f̄2(c̄u0 + Ā1u1 + Ā2u2)v̄2.

Theorem 1 and the proof of Theorem 5 show the theorem. For example, as
|v4| → ∞ we B2G2 = 0 and as |v3| → ∞ we get B1G2 + c̄B2G1 = 0. Similarly
as |u3| → ∞ we get f2A2 = 0 and as |u2| → ∞ we get f1A2 = f2A1 = 0. �

Corollary 7. When c = 0, Sα,β is hyponormal if and only if

|A1(G2u0 − f̄1u1)v̄1 + B̄1(Ḡ1u0 + Ḡ2)v2|2

≤ {|F1u0 + F̄2u1|2 − |Ḡ1u0 + Ḡ2u1|2 + (|F̄2|2 − |Ḡ2|2)|u0|2}
× {(|g1v1 + g2v2|2 − |f1v1 + f2v2|2 + (|g2|2|f2|2|v1|2}

and |F̄1u0 + F̄2u1|2−|Ḡ1u0 + Ḡ2u1|2 +(|F̄2|2−|Ḡ2|2)|u0|2 ≥ 0, |g1v1 +g2v2|2−
|f1v1 + f2v2|2 + (|g2|2 − |f2|2)|v1|2 ≥ 0 where B2G2 = B1G2 = A2f2 = A2f1 =
A1f2 = 0 and ui, vj ∈ C (i = 0, 1; j = 1, 2).

Corollaries 8 and 9 give examples that are hyponormal but not nearly normal
and Corollary 10 give examples that are nearly normal.

Corollary 8. When A1 = 0, A2B1B2 6= 0, Sα,β is hyponormal if and only if

|cḠ1u0v̄1+B1G1u0v̄2|2 ≤ (|F̄1u0+F̄2u1|2+|F2|2|u0|2)(|g1v1+g2v2|2+|g2|2|v1|2),

where G2 = f1 = f2 = 0 and ui, vj ∈ C (i = 0, 1; j = 1, 2).

Proof. If Sα,β is hyponormal, then Theorem 6 shows and so G2 = f1 = f2 = 0
the ‘only if’ part. Conversely the ‘if’ part is clear. �

Example II. Let α = a+ F1z + F2z
2 and β = b+G1z + ḡ1z̄ + ḡ2z̄

2.
(1) If Sα,β is hyponormal, then |(a−b)Ḡ1+g1G1|2 ≤ (|F1+F2|2+|F2|2)(|g1+

g2|2 + |g2|2). If Sα,β is nearly normal, then (a− b)Ḡ1 + g1G1 = 0.
(2) If α = 1 + z + z2 and β = z + z̄ + z̄2, then Sα,β is hyponormal but not

nearly normal.

Proof. (1) In Corollary 8, as u0 = u1 = v1 = v2 = 1, we can get (1).
(2) In Corollary 8, c = B1 = 1 and F1 = F2 = G1 = g1 = g2 = 1. Hence

Sα,β is hyponormal if and only if |u0v̄1 + u0v̄2|2 ≤ (|u0 + u1|2 + |u0|2)(|v1 +
v2|2 + |v1|2). Hence Sα,β is hyponormal and by (1) Sα,β is not nearly normal
because (a− b)Ḡ1 + g1G1 = 2. �

Corollary 9. Suppose A1A2B1B2 6= 0. Then Sα,β is hyponormal if and only
if

|B1G1|2|v2|2 ≤ (|F2|2 − |G1|2)(|g1v1 + g2v2|2 + |g2|2|v1|2),

where G2 = cG1 = f2 = f1 = 0 and vj (j = 1, 2).
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Proof. If Sα,β is hyponormal, by Theorem 6, G2 = cG1 = f2 = f1 = 0. Hence
by Theorem 6,

|B1G1|2|u0|2|v2|2 ≤ {|F̄1u0 + F̄2u1|2 + (|F2|2 − |G1|2)|u0|2}
× (|g1v1 + g2v2|2 + |g2|2|v1|2).

Since F2 6= 0, if we choose u1 as −F̄1u0/F̄2, then the ‘only if’ part of corollary
follows. The ‘if’ part is clear. �

Example III. Let α = a + F1z + F2z
2 and β = a + G1z + ḡ1z̄ + ḡ2z̄

2 where
F2 6= 0, g1g2 6= 0, |F2| 6= |G1| and F1 6= G1. Then

(1) Sα,β is hyponormal if and only if

|G1|2

|F2|2 − |G1|2
≤
∣∣∣∣t+

g2

g1

∣∣∣∣2 + |t|2
∣∣∣∣g2

g1

∣∣∣∣2
for any t ∈ C. Moreover Sα,β is not nearly normal.

(2) When g1 = g2, Sα,β is hyponormal if and only if 2|G1|2 ≤ |F2|2.

Proof. (1) By Theorem 6, Sα,β is hyponormal if and only if

|g1G1|2 ≤ (|F2|2 − |G1|2)

(∣∣∣∣g1
v1

v2
+ g2

∣∣∣∣2 + |g2|2
∣∣∣∣v1

v2

∣∣∣∣2
)
.

Put t = v1/v2. Then

|G1|2

|F2|2 − |G1|2
≤
∣∣∣∣t+

g2

g1

∣∣∣∣2 + |t|2
∣∣∣∣g2

g1

∣∣∣∣2
for any t ∈ C and Sα,β is not nearly normal.

(2) When g1 = g2, by (1) Sα,β is hyponormal if and only if

|G1|2

|F2|2 − |G1|2
≤ |t+ 1|2 + |t|2

for any t ∈ C. Since inf(|t+ 1|2 + |t|2) = 1/4, Sα,β is hyponormal if and only if
4 |G1|2 ≤ |F2|2 − |G1|2. �

Lemma 4. Let α = a+F1z+F2z
2+ f̄1z̄+ f̄2z̄

2, β = b+G1z+G2z
2+ ḡ1z̄+ ḡ2z̄

2

and φ = α− β = c+ A1z + A2z
2 + B̄1z̄ + B̄2z̄

2. Suppose Sα,β is hyponormal.
Then the following hold.

(1) If A1 = A2 = 0, then Sα,β is nearly normal.
(2) If B1 = B2 = 0, then Sα,β is nearly normal.
(3) If A1 = B1 = 0, then Sα,β is nearly normal.
(4) If A2 = B2 = 0, then Sα,β is nearly normal.
(5) If A1 = B2 = 0, then Sα,β is nearly normal.
(6) If A2 = B1 = 0, then Sα,β is nearly normal.
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Proof. (1) Since A1 = A2 = 0, |F̄1u0 + F̄2u1|2 − |Ḡ1u0 + Ḡ2u1|2 + (|F2|2 −
|G2|2)|u0|2 = 0. Hence by Theorem 6, Sα,β is nearly normal.

(2) Since B1 = B2 = 0, |g1v1+g2v2|2−|f1v1+f2v2|2+(|g2|2−|f2|2)|v1|2 = 0.
Hence by Theorem 6, Sα,β is nearly normal.

(3) When A1 = B1 = 0, by (1) and (2) we may assume A2B2 6= 0. By
Theorem 6, G2 = c̄G1 = f2 = f1 = 0. By Theorem 6

{(cḠ1u0 + cḠ2u1 +A1Ḡ2u0)− f̄1(c̄u0 + Ā1u1)− f̄2(c̄u1)}v1

+ (cG2u0 + B̄1Ḡ1u0 + B̄1Ḡ2u1)v̄2 = 0

and hence Sα,β is nearly normal.
(4) When A2 = B2 = 0 by (1) and (2) we may assume A1B1 6= 0. By

Theorem 6 B1G2 = A1f2 = 0 and so G2 = f2 = 0. By Theorem 6

|{(cḠ1−f̄1c̄)u0−f̄1Ā1u1}v̄1+B̄1Ḡ1u0v̄2|2≤(|F1|2−|G1|2)(|g1|2−|f1|2)|u0|2|v1|2.

As |v2| → ∞, B1G1 = 0 and so G1 = 0. Hence |(f̄1c̄u0 + f̄1Ā1u1)v̄1|2 ≤
|F1|2(|g1|2 − |f1|2)|u0|2|v1|2. As |u1| → ∞, f1A1 = 0 and so f1 = 0. Therefore
by the definition Sα,β is nearly normal.

(5) When A1 = B2 = 0, by (1) and (2) we may assume A2B1 6= 0. By
Theorem 6 G2 = f2 = f1 = 0. By Theorem 6

|cḠ1u0v̄1 + B̄1Ḡ1u0v̄2|2 ≤ (|F̄1u0 + F̄2u1|2 − |Ḡ1u0|2)|g1v1|2.

As |v2| → ∞, B1G1 = 0 and so G1 = 0. Hence by the definition Sα,β is nearly
normal.

(6) When A2 = B1 = 0 by (1), (2) and (4) we may assume A1B2 6= 0. By
Theorem 6 G2 = c̄G1 = f2 = 0.

By Theorem 6,

|f̄1(c̄u0 + Ā1u1)v̄1|2 ≤ |F1|2|g2|2|u0|2|v1|2.

As |u1| → ∞, f1A1 = 0 and so f1 = 0. By the definition Sα,β is nearly
normal. �

Corollary 10. Let α = a + F1z + F2z
2 + f̄1z̄ + f̄2z̄

2, β = b + G1z + G2z
2 +

ḡ1z̄ + g2z̄
2 and φ = α − β = c + A1z + A2z

2 + B̄1z̄ + B̄2z̄
2. Suppose Sα,β

is hyponormal. When c 6= 0, if A1B1A2B2 = 0, then Sα,β is nearly normal.
When c = 0, if B1A2B2 = 0, then Sα,β is nearly normal.

Proof. We will show that if B1A2B2 = 0, then Sα,β is nearly normal. When
B1 = 0, by (2), (3) and (6) of Lemma 4 we may assume A1A2B2 6= 0. By
Theorem 6, G2 = c̄G1 = f1 = f2 = 0. This shows that Sα,β is nearly normal
by Theorem 6.

When A2 = 0, by (1), (4) and (6) of Lemma 4 we may assume A1B1B2 6= 0.
By Theorem 6, G2 = c̄G1 = f2 = 0 and so Theorem 6 shows that

|f1(c̄u0 +A1u1)v̄1 +B1G1u0v̄2|2 ≤ (|F1|2−|G1|2)|u0|2(|g1v1 +g2v2|2−|f1v1|2).
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As |u1| → ∞, f1A1 = 0 and so f1 = 0. Hence

|B1G1|2|v2|2 ≤ (|F1|2 − |G1|2)|g1v1 + g2v2|2.
Choosing v1 and v2, we can assume g1v1 + g2v2 = 0. This shows Sα,β is nearly
normal.

When B2 = 0, by (2), (4) and (5) of Lemma 4 we may assume A1A2B1 6= 0.
By Theorem 6 G2 = f1 = f2 = 0 and so Theorem 6 shows that

|cḠ1u0v̄1 + B̄1Ḡ1u0v̄2|2

≤ {|F̄1u0 + F̄2u1|2 + (|F2|2 − |G1|2)|u0|2}(|g1v1 + g2v2|2 + |g2||v1|2).

Since B2 = 0, g2 = 0 and so

|cḠ1u0v̄1 + B̄1Ḡ1u0v̄2|2 ≤ {|F̄1u0 + F̄2u1|2 + (|F2|2 − |G1|2)|u0|2}|g1|2|v1|2.
As |v2| → ∞, B1G1 = 0 and so G1 = 0 because B1 6= 0. This shows Sα,β is
nearly normal.

We will show that if A1 = 0 and c 6= 0, then Sα,β is nearly normal. By
(1), (3) and (5) of Lemma 4 we may assume A2B1B2 6= 0. By Theorem 6
G2 = c̄G1 = f1 = f2 = 0 and so Theorem 6 shows that

|B1G1u0v2|2 ≤ (|F̄1u0 + F̄2u1|2 − |Ḡ1|2|u0|2 + |F2|2|u0|2)|g2|2(v1|2 + |v2|2).

Since c 6= 0, G1 = 0 and so by Theorem 6 Sα,β is nearly normal. �

Remark. In this section, we consider only very special case, that is, α and β
are polynomials. However we can prove a few results only when α − β is a
polynomial.
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