• Title/Summary/Keyword: Hamiltonian Function

Search Result 28, Processing Time 0.154 seconds

CONTINUOUS HAMILTONIAN DYNAMICS AND AREA-PRESERVING HOMEOMORPHISM GROUP OF D2

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.795-834
    • /
    • 2016
  • The main purpose of this paper is to propose a scheme of a proof of the nonsimpleness of the group $Homeo^{\Omega}$ ($D^2$, ${\partial}D^2$) of area preserving homeomorphisms of the 2-disc $D^2$. We first establish the existence of Alexander isotopy in the category of Hamiltonian homeomorphisms. This reduces the question of extendability of the well-known Calabi homomorphism Cal : $Diff^{\Omega}$ ($D^1$, ${\partial}D^2$)${\rightarrow}{\mathbb{R}}$ to a homomorphism ${\bar{Cal}}$ : Hameo($D^2$, ${\partial}D^2$)${\rightarrow}{\mathbb{R}}$ to that of the vanishing of the basic phase function $f_{\underline{F}}$, a Floer theoretic graph selector constructed in [9], that is associated to the graph of the topological Hamiltonian loop and its normalized Hamiltonian ${\underline{F}}$ on $S^2$ that is obtained via the natural embedding $D^2{\hookrightarrow}S^2$. Here Hameo($D^2$, ${\partial}D^2$) is the group of Hamiltonian homeomorphisms introduced by $M{\ddot{u}}ller$ and the author [18]. We then provide an evidence of this vanishing conjecture by proving the conjecture for the special class of weakly graphical topological Hamiltonian loops on $D^2$ via a study of the associated Hamiton-Jacobi equation.

MULTIPLE SOLUTIONS FOR THE NONLINEAR HAMILTONIAN SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.507-519
    • /
    • 2009
  • We give a theorem of the existence of the multiple solutions of the Hamiltonian system with the square growth nonlinearity. We show the existence of m solutions of the Hamiltonian system when the square growth nonlinearity satisfies some given conditions. We use critical point theory induced from the invariant function and invariant linear subspace.

  • PDF

FLOER MINI-MAX THEORY, THE CERF DIAGRAM, AND THE SPECTRAL INVARIANTS

  • Oh, Yong-Geun
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.363-447
    • /
    • 2009
  • The author previously defined the spectral invariants, denoted by $\rho(H;\;a)$, of a Hamiltonian function H as the mini-max value of the action functional ${\cal{A}}_H$ over the Novikov Floer cycles in the Floer homology class dual to the quantum cohomology class a. The spectrality axiom of the invariant $\rho(H;\;a)$ states that the mini-max value is a critical value of the action functional ${\cal{A}}_H$. The main purpose of the present paper is to prove this axiom for nondegenerate Hamiltonian functions in irrational symplectic manifolds (M, $\omega$). We also prove that the spectral invariant function ${\rho}_a$ : $H\;{\mapsto}\;\rho(H;\;a)$ can be pushed down to a continuous function defined on the universal (${\acute{e}}tale$) covering space $\widetilde{HAM}$(M, $\omega$) of the group Ham((M, $\omega$) of Hamiltonian diffeomorphisms on general (M, $\omega$). For a certain generic homotopy, which we call a Cerf homotopy ${\cal{H}}\;=\;\{H^s\}_{0{\leq}s{\leq}1}$ of Hamiltonians, the function ${\rho}_a\;{\circ}\;{\cal{H}}$ : $s\;{\mapsto}\;{\rho}(H^s;\;a)$ is piecewise smooth away from a countable subset of [0, 1] for each non-zero quantum cohomology class a. The proof of this nondegenerate spectrality relies on several new ingredients in the chain level Floer theory, which have their own independent interest: a structure theorem on the Cerf bifurcation diagram of the critical values of the action functionals associated to a generic one-parameter family of Hamiltonian functions, a general structure theorem and the handle sliding lemma of Novikov Floer cycles over such a family and a family version of new transversality statements involving the Floer chain map, and many others. We call this chain level Floer theory as a whole the Floer mini-max theory.

WEAK SOLUTIONS FOR THE HAMILTONIAN BIFURCATION PROBLEM

  • Choi, Q-Heung;Jung, Tacksun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.667-680
    • /
    • 2016
  • We get a theorem which shows the multiple weak solutions for the bifurcation problem of the superquadratic nonlinear Hamiltonian system. We obtain this result by using the variational method, the critical point theory in terms of the $S^1$-invariant functions and the $S^1$-invariant linear subspaces.

GRAPHICALITY, C0 CONVERGENCE, AND THE CALABI HOMOMORPHISM

  • Usher, Michael
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2043-2051
    • /
    • 2017
  • Consider a sequence of compactly supported Hamiltonian diffeomorphisms ${\phi}_k$ of an exact symplectic manifold, all of which are "graphical" in the sense that their graphs are identified by a Darboux-Weinstein chart with the image of a one-form. We show by an elementary argument that if the ${\phi}_k$ $C^0$-converge to the identity, then their Calabi invariants converge to zero. This generalizes a result of Oh, in which the ambient manifold was the two-disk and an additional assumption was made on the Hamiltonians generating the ${\phi}_k$. We discuss connections to the open problem of whether the Calabi homomorphism extends to the Hamiltonian homeomorphism group. The proof is based on a relationship between the Calabi invariant of a $C^0$-small Hamiltonian diffeomorphism and the generalized phase function of its graph.

On the Dynamics of Multi-Dimensional Lotka-Volterra Equations

  • Abe, Jun;Matsuoka, Taiju;Kunimatsu, Noboru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1623-1628
    • /
    • 2004
  • In the 3-dimensional cyclic Lotka-Volterra equations, we show the solution on the invariant hyperplane. In addition, we show the existence of the invariant hyperplane by the center manifold theorem under the some conditions. With this result, we can lead the hyperplane of the n-dimensional cyclic Lotka-Volterra equaions. In other section, we study the 3- or 4-dimensional Hamiltonian Lotka-Volterra equations which satisfy the Jacobi identity. We analyze the solution of the Hamiltonian Lotka- Volterra equations with the functions called the split Liapunov functions by [4], [5] since they provide the Liapunov functions for each region separated by the invariant hyperplane. In the cyclic Lotka-Volterra equations, the role of the Liapunov functions is the same in the odd and even dimension. However, in the Hamiltonian Lotka-Volterra equations, we can show the difference of the role of the Liapunov function between the odd and the even dimension by the numerical calculation. In this paper, we regard the invariant hyperplane as the important item to analyze the motion of Lotka-Volterra equations and occur the chaotic orbit. Furtheremore, an example of the asymptoticaly stable and stable solution of the 3-dimensional cyclic Lotka-Volterra equations, 3- and 4-dimensional Hamiltonian equations are shown.

  • PDF

Reduced Mass Effects on the Ring Inversion Vibration of 1,3-Cyclohexadiene (1,3-Cyclohexadiene의 고리반전 진동운동에 미치는 환산질량 효과)

  • Choo, Jae Bum;Han, Seong Jun
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.3
    • /
    • pp.123-129
    • /
    • 1997
  • In order to consider the reduced mass effects on the out-of-plane ring inversion vibration of 1,3-CHD, the vector-based computer program has been written and the kinetic energy expansion function for the large amplitude ring inversion vibration has been calculated using this program. The structural parameters for the calculations have been determined from the ab initio HF/6-31G** calculation. The potential energy function for the out-of-plane ring inversion vibration of 1,3-CHD has been determined from the kinetic energy expansion function and previously reported low-frequency Raman data. The vibrational Hamiltonian calculation including kinetic energy expansion function made it possible to determine the more reliable out-of-plane potential energy function for the ring inversion of 1,3-CHD.

  • PDF

Pole Placement Method to Move a Equal Poles with Jordan Block to Two Real Poles Using LQ Control and Pole's Moving-Range (LQ 제어와 근의 이동범위를 이용한 조단 블록을 갖는 중근을 두 실근으로 이동시키는 극배치 방법)

  • Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.608-616
    • /
    • 2018
  • If a general nonlinear system is linearized by the successive multiplication of the 1st and 2nd order systems, then there are four types of poles in this linearized system: the pole of the 1st order system and the equal poles, two distinct real poles, and complex conjugate pair of poles of the 2nd order system. Linear Quadratic (LQ) control is a method of designing a control law that minimizes the quadratic performance index. It has the advantage of ensuring the stability of the system and the pole placement of the root of the system by weighted matrix adjustment. LQ control by the weighted matrix can move the position of the pole of the system arbitrarily, but it is difficult to set the weighting matrix by the trial and error method. This problem can be solved using the characteristic equations of the Hamiltonian system, and if the control weighting matrix is a symmetric matrix of constants, it is possible to move several poles of the system to the desired closed loop poles by applying the control law repeatedly. The paper presents a method of calculating the state weighting matrix and the control law for moving the equal poles with Jordan blocks to two real poles using the characteristic equation of the Hamiltonian system. We express this characteristic equation with a state weighting matrix by means of a trigonometric function, and we derive the relation function (${\rho},\;{\theta}$) between the equal poles and the state weighting matrix under the condition that the two real poles are the roots of the characteristic equation. Then, we obtain the moving-range of the two real poles under the condition that the state weighting matrix becomes a positive semi-finite matrix. We calculate the state weighting matrix and the control law by substituting the two real roots selected in the moving-range into the relational function. As an example, we apply the proposed method to a simple example 3rd order system.

Magnetic Properties of Cr-doped LiNbO3 by Using the Projection Operator Technique

  • Park, Jung-Il;Lee, Hyeong-Rag;Lee, Haeng-Ki
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.108-113
    • /
    • 2011
  • The electron spin resonance lineshape (ESRLS) function for the electron spin resonance linewidth (ESRLW) of $Cr^{3+}$ (S = 3/2) in ferroelectric lithium niobate single crystals doped with 0.05 wt% of Cr, is obtained by using the projection operator technique (POT), developed by Argyres and Sigel. The ESRLS function is calculated to be axially symmetric about the c - axis and analyzed by using the spin Hamiltonian $H_{SP}={\mu}_B(B{\cdot}{^\leftrightarrow_{g}}{\cdot}S)+S{\cdot}{^\leftrightarrow_{D}}{\cdot}S$ with the parameters g = 1.972 and D = $0.395\;cm^{-1}$. In the ca plane, the linewidths show a strong angular dependence, whereas in the ab plane, they are independent of the angle. This result implies that the resonance center has an axial symmetry along the c - axis. Further, from the temperature dependence of the linewidths that is shown, it can be seen that the linewidths increase as the temperature increases, at a frequency of v = 9.27GHz. This result implies that the scattering effect increases with increasing temperature. Thus, the POT is considered to be more convenient to explain the scattering mechanism as in the case of other optical resonant systems.