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Abstract: In the 3-dimensional cyclic Lotka-Volterra equations, we show the solution on the invariant hyperplane. In addition,

we show the existence of the invariant hyperplane by the center manifold theorem under the some conditions. With this result, we

can lead the hyperplane of the n-dimensional cyclic Lotka-Volterra equaions. In other section, we study the 3- or 4-dimensional

Hamiltonian Lotka-Volterra equations which satisfy the Jacobi identity. We analyze the solution of the Hamiltonian Lotka-

Volterra equations with the functions called the split Liapunov functions by [4], [5] since they provide the Liapunov functions

for each region separated by the invariant hyperplane. In the cyclic Lotka-Volterra equations, the role of the Liapunov functions

is the same in the odd and even dimension. However, in the Hamiltonian Lotka-Volterra equations, we can show the difference

of the role of the Liapunov function between the odd and the even dimension by the numerical calculation. In this paper, we

regard the invariant hyperplane as the important item to analyze the motion of Lotka-Volterra equations and occur the chaotic

orbit. Furtheremore, an example of the asymptoticaly stable and stable solution of the 3-dimensional cyclic Lotka-Volterra

equations, 3- and 4-dimensional Hamiltonian equations are shown.

Keywords: Lotka-Volterra equations,invariant hyperplane, center manifold theorem, Liapunov functions, Hamiltonian system

1. Introduction
In this paper, We treat the Lotka-Volterra equations ẋi =

xi(bi +
∑n

j=1
aijxj) where i = 1, . . . , n. These equations de-

scribe the complex dynamical behavior of systems appearing

in the field of biology, ecology, chemistry, physics and eco-

nomics. There are, however, very few fundamental results on

global characteristics of systems that are directly applicable

to the control theory. In the following, we restrict ourselves

to analysis of the single non-trivial positive fixed point to

observe the global dynamic behavior of systems of high di-

mensions, which gives us the rich information to control the

motion of systems including the chaos when it is necessary.

We also discuss on the construction of Liapunov functions

for a specific class of systems, which makes possible the sta-

bilization of nonlinear systems in systematic ways.

2. Cyclic Lotka-Volterra equations
The cyclic Lotka-Volterra equations describe the connection

of prey-predator. Overmore, these equations cover not only

prey-predator but also the connection of some species which

have the same food. Now we study the 3- and 4-dimensional

equations.

2.1. 3-dimensional cyclic Lotka-Volterra equations

The 3-dimensional cyclic Lotka-Volterra equations are the

form of,

ẋ1 = x1(1 − c1x1 − c2x2 − c3x3),

ẋ2 = x2(1 − c3x1 − c1x2 − c2x3), (1)

ẋ3 = x3(1 − c2x1 − c3x2 − c1x3).

x1, x2, x3 denote the densities, the c1, c2, c3 are describe the

effect against each species, which are positive if it enhances

and negative if it inhibits the growth. The equations Eqs.(1)

have the following fixed points.

P0(0, 0, 0), (2)

P1(
1

c1
, 0, 0), (3)

P2(0,
1

c1
, 0), (4)

P3(0, 0,
1

c1
), (5)

P4(
1

c1 + c2 + c3
,

1

c1 + c2 + c3
,

1

c1 + c2 + c3
). (6)

For analyzing the stability of these points, we investigate the

Jacobi matrix of the fixed points P0, P1, P2, P3 and P4. Then

we use by the way of the stability distinction with the linear-

lization. Therefore, we also investigate eigenvalues of these

Jacobi matrices. The eigenvalue of P0, λ equals to 1, so P0

is always unstable. P1, P2, P3 have three same eigenvalues,

λ1 = −1, λ2 = c1−c2
c1

, λ3 = c1−c3
c1

. Therefore, the stability of

the P1, P2, P3 are denpendent on the coefficient,

· c1 < c2 and c1 < c3

asymptotically stable.

· c2 < c1 < c3 or c3 < c1 < c2 or c2 < c1 and c3 < c1

unstable.

Then, the eigenvalues of P4 are λ1 = −1, λ2 =

− 1
c1+c2+c3

(c1 − c2+c3
2

+ i
√

3
2

(c2 − c3)), λ3 = − 1
c1+c2+c3

(c1 −
c2+c3

2
− i

√
3

2
(c2 − c3)). The condition of the stability of P4 is

following,

· 2c1 > c2 + c3

asymptotically stable.

· 2c1 < c2 + c3

unstable.

Especially, if it is 2c1 = c2+c3, the real part of λ2, λ3 equal to

0, and they have only the imaginary part. In the nonlinear
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differential equations, we can not analyze the stability of

the system whose eigenvalues of Jacobi matrix have only the

imaginary part. Therefore, we discuss the stability of P4 with

the Liapunov function. About Eqs.(1), we can construct the

Liapunov function as following [6]

V =
x1x2x3

(x1 + x2 + x3)3
≥ 0, (7)

V̇ =
x1x2x3

(x1 + x2 + x3)4
(c1 − c2 + c3

2
)((x1 − x2)

2

+(x2 − x3)
2 + (x3 − x1)

2). (8)

Depending on the sign of Eq.(8), we can discriminate the

stability of P4. By the Liapunov stability theorem, if V̇ ≤ 0,

the system is stable. Therefore, we can find out this fact,

· 2c1 = c2 + c3

stable

2.2. The invariant hyperplane

From now, we introduce the invariant hyperplane to analyze

the path of Eqs.(1). Generally, when the solution that starts

from any initial points on hyper-curved surface belong to

it, the hyper-curved surface is called an invariant set. Es-

pecially, we call the invariant set the invariant hyperplane

if the hyper-curved surface is a hyperplane. For example,

the plane of the coordinate is hyperplane. In Lotka-Volterra

equations, each xi means the densities of the population and

each xi must be more than 0. If xi equals to 0, this fact

means that the extermination of the i-th kinds population.

The plane of coordinates is a trivial solution, the extermina-

tion. Therefore xi never get over 0 for the future time. In

this paper, we investigate the hyperplane except the plane

of coordinates.

P4 is the fixed point which has the different eigenvalues from

P1, P2, P3 and does not belong to the coordinates. Therefore

we treat the P4 as the important fixed point for analyzing

the cyclic Lotka-Volterra equations.

2.2.1 The first candidate of the invariant hyperplane

When 2c1 > c2 + c3, P4 is asymptotically stable, the other

fixed points are unstable. Then, we search the invariant

hyperplane in the neiborhood of P4 by the linearlization ap-

proximation.

The eigenvalues of P4’s Jacobi matrix has been already cal-

culated. Then, we investigate the eigenvectors of λ1, λ2, λ3.

y1 =

⎡⎣ 1

1

1

⎤⎦ , y2 =

⎡⎣ 1

− 1
2

+ i
√

3
2

− 1
2
− i

√
3

2

⎤⎦ , y3 =

⎡⎣ 1

− 1
2
− i

√
3

2

− 1
2

+ i
√

3
2

⎤⎦ .

With these vectors, the divergence of P4, δx is expressed

approximationly

δx = α1y1 + α2y2 + α3y3,

= α1

⎡⎣ 1

1

1

⎤⎦ + α2

⎡⎣ 1

− 1
2

+ i
√

3
2

− 1
2
− i

√
3

2

⎤⎦ + α3

⎡⎣ 1

− 1
2
− i

√
3

2

− 1
2

+ i
√

3
2

⎤⎦ .

(9)

δx is the candidate of the invariant hyperplane which must

be expressed with real number. Therefore the plane denoted

with α1y1 and α2y2, or α1y1 and α3y3 is not the invariant

hyperplane. The plane denoted with α3y3 and α2y2 is may

be the invariant hyperplane which has the vertical vector

u = (1, 1, 1)t. We assume that asymptotically stable P4 is

on this invariant hyperplane, the equation of the plane is

following.

x1 + x2 + x3 =
3

c1 + c2 + c3
. (10)

Eq.(10) is the first candidate.

2.2.2 The second candidate

[7]When all the fixed points are unstable, the solution draws

among the P1, P2 and P3. From this fact, we think the plane

it include these three fixed points

x1 + x2 + x3 =
1

c1
. (11)

Eq.(11) is the second candidate.

2.3. Simulation

From now, we show the result of 3-dimensional cyclic Lotka-

Volterra equations, in four terms of ”2c1 > c2 + c3” , ”2c1 =

c2 + c3” , ”c1 < c2 + c3 and c2 > c1 > c3 or c2 < c1 < c3” ,

”c1 < c2 + c3 and c1 < c2 and c1 < c3”.
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Fig.1 In term of 2c1 > c2 + c3
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Fig.2 In term of 2c1 = c2 + c3

· Fig.1 The orbit converged to P4 on Eq.(10). Under this

condition, the invariant hyperplane did not exsit. How-

ever, the orbit stayed in the domain D0 = {x| 1
c1

≤
x1 + x2 + x3 ≤ 3

c1+c2+c3
} and never went out of D0.
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Fig.4 In term of c1 < c2 + c3 and c1 < c2 and c1 < c3

Namely, we recognized D0 had the same specific as an

invariant set.

· Fig.2 The invariant hyperplane Eq.(10) existed, over-

more the orbit drew the limit cycle on the invariant

hyperplane.

· Fig.3 The solution drew the orbit between P1, P2 and

P3 for the future time.

· Fig.4 The solution converged to P1. In this case, an

invariant hyperplane did not exsit, however we could

observe that the orbit never went out of D0.

2.4. 4-dimensional cyclic Lotka-Volterra equations

The 4-dimensional cyclic Lotka-Volterra equations are the

form

ẋ1 = x1(1 − c1x1 − c2x2 − c3x3 − c4x4),

ẋ2 = x2(1 − c4x1 − c1x2 − c2x3 − c3x4),

ẋ3 = x3(1 − c3x1 − c4x2 − c1x3 − c2x4),

ẋ4 = x4(1 − c2x1 − c3x2 − c4x3 − c1x4).. (12)

The meanings of the variables and coefficients are the same

as those of 3-dimensional cyclic Lotka-Volterra equations.

Eqs.(12) have the Liapunov function as following,

V (x) =
x1x2x3x4

(x1 + x2 + x3 + x4)4
, (13)

V̇ (x) =
x1x2x3x4

(x1 + x2 + x3 + x4)5

((3c1 − c2 − c3 − c4)(x
2
1 + x2

2 + x2
3 + x2

4)

+2(−c1 + c2 − c3 + c4)(x1x2 + x2x3 + x3x4 + x4x1)

+2(−c1 − c2 + 3c3 − c4)(x1x3 + x2x4)). (14)

Through the same argument as 3-dimensions, we can dis-

criminate the stability of Eqs.(12) by the eigenvalues of the

Eq.(12)’s Jacobi matrix and by the Liapunov stability ap-

proximation which comes from Eq.(14).

3. The invariant hyperplane of the
n-dimensional Lotka-Volterra equations

3.1. In 3-dimension

Before n-dimensions, we show the existence of the invariant

hyperplane by the center manifold theorem.

<Proposition 1>Eqs.(1) have the invariant hyperplane

Eq.(10) under the conditon 2c1 = c2 + c3.

<Proof>First, we translate the fixed point P4 to the origin.

After the translation, the Eqs.(1) are

ẋ1 = −(x1 + α)(c1x1 + c2x2 + c3x3),

ẋ2 = −(x2 + α)(c3x1 + c1x2 + c2x3), (15)

ẋ3 = −(x3 + α)(c2x1 + c3x2 + c1x3).

Where α = 1
c1+c2+c3

. We set interaction matrix A,

A = −α

⎛⎝ c1 c2 c3

c3 c1 c2

c2 c3 c1

⎞⎠ . (16)

With eigenvectors of A, v1, v2, v3, we make the conversion

matrix T afresh.

T−1 = [v1 v2 v3]. (17)

Then, we convert the variables xt = (x1 x2 x3)
t to ξ =

(u v w)t = Txt and Eqs.(15) are anew written as following,

ξ̇ =
d

dt

⎛⎝ u

v

w

⎞⎠ =

⎛⎝ −u + 3
2
(c2 + c3)u

2 − 2
√

3
3

c3iuv
3
2
c2 + (2 −

√
3

3
i)c3uv + λ2v

3
2
c2 + (2 +

√
3

3
i)c3uv + λ3v

⎞⎠ ,

(18)

λ2, λ3 are eigenvalues corresponding to eigenvectors v1, v2

and they are the imaginary number under the condition

2c1 = c2 + c3. Next, we assume the center manifold ex-

ists which is the form u = π(v, w) and use the constance of

that motion. Differrentiate u by t,

u̇ =
∂π

∂v
v̇ +

∂π

∂w
ẇ. (19)

Then we sustitute Eq.(19) for Eq.(19),

−π +
3

2
(c2 + c3)π

2 − 2
√

3

3
c2iπv

=
∂π

∂v
(Bπv + λ2v) +

∂π

∂w
(B̄πv + λ3w), (20)

where B = 3
2
c2 + (2 −

√
3

3
i)c3, B̄ = 3

2
c2 + (2 +

√
3

3
i)c3. We

also assume that u = π(v, w) is the quadratic form of u, v

and π(0, 0) = 0. The expression of u = π(v, w) is as

π(v, w) = h1v + h2w + h3v
2 + h4vw + h5w

2. (21)
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We substitute Eq.(21) for Eq.(20) and obtain the idential

equation about h1, h2, h3, h4, h5. The solution of the idential

equation is h1 = h2 = h3 = h4 = h5 = 0. Accordingly we

found the existence of the center manifold which is the form

u = π(v, w) = 0. By T conversion, u = 1
3
(x1 + x2 + x3) = 0.

Overmore, re-translation the origin to P4,
1
3
(x1+x2+x3) = 0

is formed of,

x1 + x2 + x3 =
3

c1 + c2 + c3
, (22)

as required. (Q.E.D.)

3.2. In n-dimension

Next subject, we lead the hyperplane of n-dimensional cyclic

Lotka-Volterra equations with the same way as 3-dimensions.

<Proposition 2>The n-dimensional cyclic Lotka-Volterra

equations have the invariant hyperplane which is the form

of,
n∑

i=1

xi =
n∑n

j=1
cj

, (23)

consistent with the center manifold.

<Proof>The n-dimensional cyclic Lotka-Volterra equations

are the form of

d

dt

⎛⎜⎜⎜⎝
x1

x2

...

xn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
x1(1 − c1x1 − c2x2 − · · · − cnxn)

x2(1 − cnx1 − c1x2 − · · · − cn−1xn)
...

xn(1 − c2x1 − c3x2 − · · · − c1xn)

⎞⎟⎟⎟⎠ .

(24)

P is the fixed point which is P ∈ Rn
++ = x ∈ Rn

+ : xi > 0.

We set γ =
∑n

i=1
ci, then P (γ−1, γ−1, · · · , γ−1). After the

translation P to the origin, we obtain the interaction matrix

A,

A = −γ−1

⎛⎜⎜⎜⎝
c1 c2 · · · cn

cn c1 · · · cn−1

...

c2 c3 · · · c1

⎞⎟⎟⎟⎠ . (25)

vi is the eigenvector corresponding the eigenvalue λi. We

secure the conversion matrix T−1 = (v1, v2, · · · , vn), then

we convert (y1, y2, · · · , yn) = T (x1, x2, · · · , xn)t. With T ,

Eqs.(24) are also convert to,

d

dt

⎛⎜⎜⎜⎝
y1

y2

...

yn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
λ1 0 0 0

0 λ2 0 0
...

. . .
...

0 0 0 λn

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
δ1

δ2

...

δn

⎞⎟⎟⎟⎠ , (26)

where δi (i = 1, 2, . . . , n) is the quadratic forms of

y1, y2, . . . , yn. We assume that the existence of the center

manifold which is y1 = π(y2, . . . , yn), then differentiate y1

by t,

d

dt
y1 =

d

dt

n∑
k=2

k∑
l=2

Dklykyl (27)

=
∂π

∂y2
ẏ2 + · · · + ∂π

∂yn
ẏn (28)

= (D22y2 + D23y3 + · · · + D2nyn)(λ2y2 + δ2) + · · ·
+ (Dn2y2 + Dn3y3 + · · · + Dnnyn)(λnyn + δn) (29)

After substitution Eq.(29) for Eq.(26), the solution of the

idential equations about Dkl is Dkl = 0, (k, l = 1, 2, · · · , n).

This means that the equation of the invariant hyperplane is

y1 = x1 + x2 + · · · + xn = 0. Then we re-translate P to the

origin, and the equation of the hyperplane is

n∑
i=1

xi =
n∑n

j=1
cj

(30)

as required.(Q.E.D.)

4. Hamiltonian Lotka-Volterra equations
The general Lotka-Volterra equations for n-dimensions are

the form,

ẋi = xi(bi +

n∑
j=1

aijxj), (31)

where i = 1, · · · ,n. The xi denote the densities, the bi are the

intrinsic growth or decay rates, and the aij describe the effect

of the jth population upon the ith population, which are

positive if it enhances and negative if it inhibits the growth.

Then, Eq.(31) is called Hamiltonian system if Eq.(31) can

be written as ẋ = J(x)∇H(x) where

1. H(x) is a smooth real valued function defined on Rn

2. J(x) is an x-dependent skew-symmetric matrix satis-

fying the Jacobi-identity

n∑
l=1

(jil
∂jmk

∂xl
+jkl

∂jim

∂xl
+jml

∂jki

∂xl
) = 0, 1 ≤ i, k, m ≤ n.

(32)

Besides these, we set the essence of J(x) to

jik = cikxixk, (33)

and H(x) to a linear function of the form,

H =

n∑
l=1

Blxl − xn+1. (34)

The equations we can lead after substitution Eq.(33) and

(34) for ẋ = J(x)∇H(x) are Hamiltonian Lotka-Volterra

equations after rescaled the dynamical variables and coeffi-

cients. From now, we proove that Eq.(31) have the invariant

hyperplane under the one conditions.

<Proposition 3>Eqs.(31) admit an invariant hyperplane

of the form

1 +

n∑
l=1

Blxl = 0, Bl =
all

bl
, (35)

in the following algebraic conditions are satisfied for all l, j =

1, . . . , n

Bl(alj − blBj) = −Bj(ajl − bjBl). (36)

<Proof>Let x lies on the hyperplane 1 +
∑n

l=1
= 0. Then

n∑
l=1

Blẋl =

n∑
l=1

Blblxl +

n∑
l,j=1

Blaljxlxj ,

= (

n∑
l=1

Blblxl)(−
n∑

j=1

) +

n∑
l,j=1

Blaljxlxj ,

=

n∑
l,j=1

Bl(alj − blBj)xlxj .
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This quadratic form is identical to 0 in its coefficient matrix

is skew-symmetric, i.e. Bl(alj −blBj) = −Bj(ajl−bjBl) and

required.(Q.E.D.)

In the n-dimensional Hamiltonian Lotka-Volterra equations,

we can use the function similar to the Liapunov function

which are the form,

V (x) = (

n∏
l=1

xβl
l )(1 +

n∑
l=1

Blxi), β = (b1B1, . . . , bnBn)A−1,(37)

V̇ (x) =

n∏
l=1

Blx
βl
l [(β · b)(1 +

n∑
l=1

Blxi) +

n∑
j=1

(bjBj +

n∑
l=1

βlalj)xj

+

n∑
j,l=1

(Blalj + Bl

n∑
k=1

βkakj)xjxl], (38)

= (β · b)V (x). (39)

Aij = aij of Eqs.(31). This representation shows that

V̇ (x) > 0 on one side of the invariant hyperplane Eq.(35),

V̇ (x) = 0 on the hyperplane and V̇ (x) < 0 on the other side.

Functions with this property are called the split Liapunov

functions by [4], [5], since they provide Liapunov functions

for each invariant region separated by the invariant hyper-

plane. Applying Liapunov’s theorem yields that the orbits

starting in the interior of the state space go to the boundary,

to infinity, or to the invariant hyperplane, which is attracting

on the left-hand side and repelling on the right-hand side.

4.1. Numerical analysis

4.1.1 3-dimension

We simulated the 3-dimensional Hamiltonian Lotka-Volterra

equations which were Bl = all
bl

= −1 and A1, the form of,

A1 =

⎛⎝ 2 −6 3

11 3 2

−2 0 −1

⎞⎠ , (40)

in Eq.(35) without lack of generality. A1 had (b · β) = − 3
10

in Eq.(39). Bl = all
bl

= −1 meant that the intrinsic growth

rate equaled to the rate of the inhibition because of lth pop-

ulation, itself. We instituted three initial points x01, x02, x03

which were,

x01 =

⎛⎝ 0.2

0.5

0.2

⎞⎠ , x02 =

⎛⎝ 0.2

0.5

0.3

⎞⎠ , x03 =

⎛⎝ 0.3

0.3

0.5

⎞⎠ .

Each initial point belonged to each domain separated by an

invariant hyperplane
∑3

i=1
xi = 1. To analyze the orbit

easily, we defined the three domains separated by an in-

variant hyperplane of the systems. The first domain D1 =

{x|∑n

i=1
xi < 1} was a set including the origin, the second

domain was D2 = {x|∑n

i=1
xi = 1} which was an invariant

hyperplane itself, the third domain D3 = {x|∑n

i=1
xi > 1}

was a set not including the origin.
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Fig.5 Initial point x01
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Fig.6 Initial point x02
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Fig.7 Initial point x03

· Fig.5 This initial point was in D1. Therefore, Lia-

punov function Eq.(37) was V > 0. Then, because

V̇ = − 3
10

V < 0, the orbit dropped into the limit cycle

on an invariant hyperplane.

· Fig.6 This initial point was in D2. The Liapunov func-

tion Eq.(37) was V = 0. Then, V̇ = − 3
10

V = 0, there-

fore the orbit drew the limit cycle on an invariant hy-

perplane.

· Fig.7 This initial point was in D3, Liapunov function

Eq.(37) is V < 0. Therefore, V̇ = − 3
10

V > 0. The

orbit did not approach the fixed point on invariant hy-

perplane but diverged.

4.1.2 4-dimension

It was same as 3-dimension, that we simulated under the

condition which was Bl = all
bl

= −1. We constructed the

interaction matrix A2,

A2 =

⎛⎜⎜⎝
−1 −2 −2 0

0 −1 0 −4

2 0 1 2

0 4 0 1

⎞⎟⎟⎠ . (41)

This system had the fixed point P4(0.2, 0.2, 0.2, 0.2). Over-

more, we used three initial points

x04 =

⎛⎜⎜⎝
0.1

0.2

0.3

0.3

⎞⎟⎟⎠ , x05 =

⎛⎜⎜⎝
0.1

0.2

0.4

0.3

⎞⎟⎟⎠ , x06 =

⎛⎜⎜⎝
0.2

0.2

0.3

0.4

⎞⎟⎟⎠ .

x04 belonged to D1, x05 was on D2 and x06 was in

D3. Now we showed the figures of simulation which
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was a projection to x4 = 0 to observe the orbit easily.
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· Fig.8 Because x04 was in D1, we expected that the

orbit drew a cycle. By Fig.8, we could verify the 2-

dimensional tori which confined the solution. Then,

we investigated the relation of each variable x1-x4 and

found these result,

x2
1 + x2

2 = const, x2
3 + x2

4 = const,

x2
1 + x2

3 = const, x2
2 + x2

4 = const. (42)

Therefore, we could recognize the existence of the tori.

· Fig.9 Since x05 was on hyperplane, we expected the

same result as Fig.8. At first, the solution drew the

cycle. However, after a while the solution went out of

the cycle and diverged for the future time. For that

reason, the hyperplane was in the unstable domain.

· Fig.10 The orbit diverged for the future time.

4.2. Study of Hamiltonian Lotka-Volterra equations

In the above section, we could inspect the difference of the

role of an invariant hyperplane between 3-dimension and 4-

dimension by an initial point. The Table 1. is the role of an

invariant hyperplane in 3- and 4-dimension.

We expand the above, in Hamiltonian Lotka-Volterra equa-

tions, the invariant hyperplane’s role of even dimension is

different from odd dimension. The difference comes from the

number of eigenvalues which each dimension has. When the

fixed point which has non-zero components is stable, even di-

mension has the even pair of the imaginary eigenvalus. How-

ever, odd dimension has the negative real eigenvalues and

the complex eigenvalues that have the negative real number.

This describe the difference of the orbit of the solution.

5. Conclusion
We could prove the existence of the invariant hyperplane in

the n-dimensional cyclic Lotka-Volterra equation with the

results of 3- and 4- dimensions. Moreover, we found the

difference of the invariant hyperplane’s role between the odd

and even dimension in the Hamiltonian Lotka-Volterra equa-

tion. With this fact, we could advance the analysis of the n-

dimensional Lotka-Volterra equation. We also could find two

Table 1. The role of the invariant hyperplane

Initial Point 3-dimension 4-dimension

in D1 The stability of

the solution de-

pends on the sign

of the split Lia-

punov function

Unstable at all

times

in D2 The hyperplane

works as the

invariant hy-

perplane. The

solution draws

the limit cycle.

The fixed point is

on the invariant

hyperplane.

The hyperplane

does not work

as the invariant

hyperplane.

in D3 The stability of

the solution de-

pends on the sign

of the split Lia-

punov function

The fixed point ex-

ists in D3. The

solution draws two

quadratic cycles.

2-dimensional tori in the 4-dimensional Hamiltonian Lotka-

Volterra equations. In the region between these tori there

were at least finitely many periodic orbits, and in general

chaotic motion could be expected by Birkhoff’s theorem.

Moreover, with another conditions, we will be able to occur

and control the chaotic orbit, if we can get much deeper in-

formation in this systems dynamics. This paper contributed

to analyze and control the chaotic motion sufficiently.
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