On the Dynamics of Multi-Dimensional Lotka-Volterra Equations

  • Abe, Jun (Department of Science and Technology, Keio University) ;
  • Matsuoka, Taiju (Department of Science and Technology, Keio University) ;
  • Kunimatsu, Noboru (Department of Science and Technology, Keio University)
  • Published : 2004.08.25

Abstract

In the 3-dimensional cyclic Lotka-Volterra equations, we show the solution on the invariant hyperplane. In addition, we show the existence of the invariant hyperplane by the center manifold theorem under the some conditions. With this result, we can lead the hyperplane of the n-dimensional cyclic Lotka-Volterra equaions. In other section, we study the 3- or 4-dimensional Hamiltonian Lotka-Volterra equations which satisfy the Jacobi identity. We analyze the solution of the Hamiltonian Lotka- Volterra equations with the functions called the split Liapunov functions by [4], [5] since they provide the Liapunov functions for each region separated by the invariant hyperplane. In the cyclic Lotka-Volterra equations, the role of the Liapunov functions is the same in the odd and even dimension. However, in the Hamiltonian Lotka-Volterra equations, we can show the difference of the role of the Liapunov function between the odd and the even dimension by the numerical calculation. In this paper, we regard the invariant hyperplane as the important item to analyze the motion of Lotka-Volterra equations and occur the chaotic orbit. Furtheremore, an example of the asymptoticaly stable and stable solution of the 3-dimensional cyclic Lotka-Volterra equations, 3- and 4-dimensional Hamiltonian equations are shown.

Keywords