
Korean J. Math. 17 (2009), No. 4, pp. 507–519

MULTIPLE SOLUTIONS FOR THE NONLINEAR

HAMILTONIAN SYSTEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We give a theorem of the existence of the multiple solu-
tions of the Hamiltonian system with the square growth nonlinear-
ity. We show the existence of m solutions of the Hamiltonian system
when the square growth nonlinearity satisfies some given conditions.
We use critical point theory induced from the invariant function and
invariant linear subspace.

1. Introduction and statement of main result

Let H(z(t)) be a C2 function defined on R2n which is 2π−periodic
with respect to the variable t. Let z = (p, q), p = (z1, · · · , zn), q =
(zn+1, · · · , z2n). In this paper we investigate the existence and the mul-
tiplicity of 2π−periodic solutions of the following Hamiltonian system

ṗ = −Hq(p, q), (1.1)

q̇ = Hp(p, q).

Letting J be the standard symplectic structure on R2n, i.e.,

J =

(
0 −In

In 0

)
,

In is the n× n identity matrix on Rn, system (1.1) can be written in a
compact version

−Jż = Hz(z), (1.2)
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where z : R → R2n, ż = dz
dt

and Hz is the gradient of H. We define

F (z) = Hz(z(t))

Let L2(S1, R2n) denote the set of 2n-tuples of 2π periodic functions which
are square integrable. If z ∈ L2(S1, R2n), it has a Fourier expansion

z =
∑

k∈Z ake
ikt, where ak = 1

2π

∫ 2π

0
z(t)e−iktdt ∈ C2n, a−k = āk and∑

k∈Z |ak|2 < ∞. Let

E = W
1
2
,2(S1, R2n) = {z ∈ L2(S1, R2n)|

∑

k∈Z

(1 + |k|)|ak|2 < ∞}

and let

‖z‖ = ‖z‖
L

1
2 ,2 = (

∑

k∈Z

(1 + |k|)|ak|2) 1
2 . (1.3)

The space E endowed with this norm is a real Hilbert space continuously
embedded in L2(S1, R2n). Let a·b and |·| denote the usual inner product
and norm on R2n. We assume that the Hamiltonian function H satisfies
the following conditions:
(H1) H ∈ C2(R2n, R), H(z) = o(|z|2) as |z| → 0.
(H2) There exist constants α and β such that α, β 6= Z, α < β and

α|z|2 < Hz(z) · z < β|z|2 ∀z ∈ R2n.

(H3) There exist integers j1, j2,. . ., j2m in [α, β].
(H4) There exist γ and C such that j2m < γ < β and

H(z) ≥ 1

2
γ‖z‖2 − C ∀z ∈ R2n.

(H5) H is 2π−periodic with respect to t.
By (H2), there is a constant C > 0 such that

‖Fz(z)‖L2(R2n) ≤ C,

then

Φ(z) =

∫ 2π

0

H(z(t))dt ∈ C1(E,R).

In this paper we are looking for the weak solutions z ∈ E of (1.2); that
is, z ∈ E satisfies

∫ 2π

0

(ż − J(Hz(z))) · Jwdt = 0 ∀w ∈ E.
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We observe that by Proposition 2.1, the weak solutions of (1.2) coincide
with the critical points of the corresponding functional

f(z) =
1

2
A(z)−

∫ 2π

0

H(z(t))dt,

where A(z) =
∫ 2π

0
ż · Jzdt. Here f(z) ∈ C1(E, R).

Our main result is the following:

Theorem 1.1. Assume that H satisfies the conditions (H1)-(H5).
Then (1.2) has at least m weak solutions, which are geometrically dis-
tinct and nonconstant. Moreover, if H is of class Ck, these solutions are
of class Ck(S1, R2n).

Our proof use the ideas in [1]. In section 2, we introduce a closed
invariant linear subspace X of E which is invariant under A, the invariant
subspaces of X and the invariant function on X. We obtain some results
on the norm ‖·‖ and the functional f(z), and recall a critical point theory
in terms of the S1-invariant functional and S1-invariant subspaces which
plays a crucial role for the proof of the main result. In section 3, we show
that the functional f satisfies the conditions for the multiple solution
theorem, and prove Theorem 1.1.

2. Some results on ‖ · ‖, f

Let E = W
1
2
,2(S1, R2n). The scalar product in L2 naturally extends

as the duality pairing between E and E ′ = W− 1
2
,2(S1, R2n). For smooth

z = (p, q) ∈ E, where p and q are each n− tuples, we can check that

‖Az‖ ≤ (
∑
j∈Z

|j||pj|2) 1
2 (

∑
j∈Z

|j||qj|2) 1
2 ≤ ‖z‖2

E.

Therefore A extends to all of E as a continuous quadratic form. This
extension will still be denoted by A. Let e1, · · · , e2n denote the usual
bases in R2n and set

E0 = span{e1, · · · , e2n},

E+ = span{(sin jt)ek − (cos jt)ek+n, (cos jt)ek + (sin jt)ek+n,

| j ∈ N, 1 ≤ k ≤ n},
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E− = span{(sin jt)ek + (cos jt)ek+n, (cos jt)ek − (sin jt)ek+n

| j ∈ N, 1 ≤ k ≤ n}.
Then E = E0⊕E+⊕E− and E+, E−, E0 are the subspaces of E on which
A is positive definite, negative definite, and null, and these spaces E+,
E− and E0 are mutually orthogonal in L2(S1, R2n). If z = z0+z++z− ∈
E, A+ = A|E+ and A− = A|E− , then

‖z‖2 = |z0|2 + A+(z+)− A−(z−)

which serves as an equivalent norm on E. The space E with this norm
‖ · ‖ is a Hilbert space.
We need the following facts in [4]:

Proposition 2.1. For each s ∈ [1,∞), E is compactly embedded in
Ls(S1, R2n). In particular, there is an αs > 0 such that

‖z‖Ls ≤ αs‖z‖
for all z ∈ E.

By the following proposition which was proved in Proposition 2 of
[3], f ∈ C1 and Frèchet differentiable in E, hence the weak solutions of
(1.2) coincide with the critical points of the functional f(z).

Proposition 2.2. Assume that H satisfies the conditions (H1)-(H5).
Then f(z) is C1, that is, f(z) is continuous and Frèchet differentiable
in E with Frèchet derivative

∇f(z)ω =

∫ 2π

0

(ż − J(Hz)) · Jω

=

∫ 2π

0

[(ṗ + Hq(z)) · ψ − (q̇ −Hp(z)) · φ]dt,

where z = (p, q) and ω = (φ, ψ) ∈ E. Moreover the functional z 7→∫ 2π

0
H(z)dt is C1.

Let us define some notations and concepts on S1−invariant set and
S1−invariant function: Let X be a real Hilbert space on which the
compact Lie group S1 acts by means of time translations, hence by
orthogonal transformations; for z ∈ X and θ ∈ [0, 2π], we define an
S1-action on X by

(Tθz)(t) = z(t + θ), for all t ∈ [0, 2π].
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Let Fix{Tθ} be the set of fixed points of the action, i.e.,

Fix{Tθ} = {z ∈ X| Tθz = z, ∀θ ∈ [0, 2π]}.
We say a subset B of X an S1-invariant set if for all z ∈ B and θ ∈ [0, 2π],
Tθz ∈ B. A function f : X → R1 is called S1-invariant, if f(Tθz) = f(z),
∀z ∈ X, for all θ ∈ [0, 2π]. Let C(B,X) be the set of continuous
functions from B into X. If B is an invariant set we say h ∈ C(B, X) is
an equivariant map if h(Tθz) = Tθh(z) for all θ ∈ [0, 2π] and z ∈ B.

Now we define the subspaces X, X+, X−, and X0 of E as follows:
Let us denote, for i =

√−1 and k ∈ N ,

φ̌k = (sin kt)ek − (cos kt)ek+n,

iφ̌k = (cos kt)ek + (sin kt)ek+n,

ψ̌k = (sin kt)ek + (cos kt)ek+n,

iψ̌k = (cos kt)ek − (sin kt)ek+n.

Let z be a function of W
1
2
,2(S1, R2n); there exists one and only one

function of W
1
2
,2(R, R2n) which is 2π periodic in t and equals z on S1;

we shall denote this function by z. Let X be the closed subspace of E
defined by

X = {z ∈ E| ak = 0 if k is even }.
Then X is a closed invariant linear subspace of E compactly embedded
in L2(S1, R2n). Moreover A(X) ⊆ X, A : X → X is an isomorphism
and ∇f(X) ⊆ X. Therefore constrained critical points on X are in
fact free critical points on E. Moreover, distinct critical orbits give
rise to geometrically distinct solutions. From now on f will denote the
restriction of f to X. Let

X+
m,l = {z| z ∈ X, z ∈ span{φ̌k, iφ̌k| m ≤ k ≤ l}},

X−
m,l = {z| z ∈ X, z ∈ span{ψ̌k, iψ̌k| m ≤ k ≤ l}},

X+ = {z| z ∈ X, z ∈ span{φ̌k, iφ̌k| n + 1 ≤ k < ∞}},
X− = {z| z ∈ X, z ∈ span{ψ̌k, iψ̌k| n + 1 ≤ k < ∞}},

X0 = {z| z ∈ X, z ∈ span{φ̌k, iφ̌k| 1 ≤ k ≤ n}}.
Then X = X+⊕X−⊕X0 and A(z) is positive definite, negative definite
and null on X+, X−, X0, respectively. For

z = z+ + z− + z0 ∈ X+ ⊕X− ⊕X0 = X,
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we take a norm for X

‖z‖2
X = A(z+)− A(z−) + |z0|2.

With this norm, X become a Hilbert space and X+, X−, X0 are orthog-
onal subspaces of X with respect to the inner product associated with
this norm, as well, as the L2 inner product. We note that by Proposition
2.2, f(z) ∈ C1(X, R). We have the following lemma:

Lemma 2.1. Assume that H satisfies the conditions (H1)-(H5). Let
z ∈ Fix{Tθ} and z be a critical point of the functional of f , i.e., ∇f(z) =
0. Then f(z) = 0.

Proof. Let ρ : R → R be a Borel function defined by

ρ(z) =

{
Hz(z)·z
|z|2 if z 6= (0, . . . , 0),

α + β−α
2

if z = (0, . . . , 0).

Since ∇f(z)z = 0, we have that
∫ 2π

0

żJw − ρ(z)z · wdt = 0 for w ∈ E. (2.1)

Let us set z = z1 + z2, z1, z2 ∈ E, such that
∫ 2π

0
ż1Jz1dt ≤ α

∫ 2π

0
z2
1dt

and
∫ 2π

0
ż2Jz2dt ≥ β

∫ 2π

0
z2
2dt. Putting z = z1 + z2 and w = z2 − z1 into

(2.1), we have
∫ 2π

0

(ρ(z)− α)z2
1dt +

∫ 2π

0

(β − ρ(z))z2
2dt ≤ 0.

Thus we have (ρ(z) − α)z2
1 = (β − ρ(z))z2

2=0 a.e. in ]0, 2π[. Since ρ is
continuous on R\0, ρ(z) ∈ {α, β} if z 6= (0, . . . , 0). In any case we have
that

Hz(z) · z = 2H(z).

It follows that

f(z) =

∫ 2π

0

[
1

2
Hz(z) · z −H(z)]dt = 0.

Thus we prove the lemma.

Now we recall the critical point theory in terms of the S1−invariant
subspace and S1−invariant function in Theorem 4.1 of [1] which plays a
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crucial role for the proof of Theorem 1.1: Let Sr be the sphere centered
at the origin of radius r. Let f : X → R be a functional of the form

f(z) = L(z)− ψ(z), (2.2)

where L : X → R is linear, continuous, symmetric and equivariant,
ψ : X → R is of class C1 and invariant and Dψ : X → X is compact.

Theorem 2.1. Assume that f ∈ C1(X, R1) is S1-invariant and there
exist two closed invariant linear subspaces V , W of X and r > 0 with
the following properties:
(a) V + W is closed and of finite codimension in X;
(b) Fix{Tθ} ⊆ V + W ;
(c) L(W ) ⊆ W ;
(d) supSr∩V f < +∞ and infW f > −∞;
(e) u /∈ Fix{Tθ} whenever Df(z) = 0 and

inf
W

f ≤ f(z) ≤ sup
Sr∩V

f ;

(f) f satisfies (P.S.)c condition whenever infW f ≤ c ≤ supSr∩V f .
Then f possesses at least

1

2
(dim(V ∩W )− codimX(V + W ))

distinct critical orbits in f−1([infW f, supSr∩V f ]).

3. Proof of theorem 1.1

From now on we shall prove Theorem 1.1 by applying the multiplicity
result of Theorem 2.1. We assume that H satisfies the conditions (H1)-
(H5). Let c0 = α+j1

2
and let L0 : X → X be the linear operator such

that

L0(z) = A(z)− c0

∫ 2π

0

z2dt.

Then L0 is symmetric, bijective and equivariant. Let X−(L0) be the
negative space of L0 and X+(L0) be the positive space of L0. Then

X = X−(L0)⊕X+(L0).

Moreover, we have

∀z ∈ X−(L0) : L0(z) ≤ ((j1 − 1)− c0)

∫ 2π

0

z2dt, (3.1)
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∀z ∈ X+(L∞) : L0(z) ≥ (j1 − c0)

∫ 2π

0

z2dt.

Thus there exists b > 0 such that

L0(z) ≤ −b‖z‖2
X , ∀z ∈ X−(L0),

L0(z) ≥ b‖z‖2
X , ∀z ∈ X+(L0).

Then

f(z) =
1

2
L0(z)− ψ0(z), (3.2)

where

ψ0(z) =

∫ 2π

0

[H(z)− 1

2
c0z

2]dt.

Since X is compactly embedded in L2(S1, R2n), the map Dψ0 : X → X
is compact.

Lemma 3.1. Assume that H satisfies the conditions (H1)-(H5). Then
the functional f(z) is bounded from above on X−(L0) and from below
on X+(L0). That is,

−∞ < inf
z∈X+(L0)

f(z) and sup
z∈X−(L0)

f(z) < ∞.

Proof. Let us take a, ā ∈ R with

α < a < inf
z∈X\{0}

Hz(z) · z
|z|2 < ā < j1 (3.3)

and set H0(z) = H(z) − 1
2
c0z

2. Then there exists constant c ≥ 0 such

that H0(z) ≤ 1
2
τz2 + c, where τ = ā − c0 < j1−α

2
. We have that for

z ∈ X+(L0),

L0(z) ≥ (j1 − c0)

∫ 2π

0

z2dt =
j1 − α

2

∫ 2π

0

z2dt,

ψ0(z) =

∫ 2π

0

H0(z)dt ≤ 1

2
τ

∫ 2π

0

z2dt + 2πc.

Thus we have

f(z) =
1

2
L0(z)− ψ0(z) ≥ 1

2
(
j1 − α

2
− τ)

∫ 2π

0

z2dt− 2πc > −∞.
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Similarly, from (3.3), there exists constant c̄ > 0 such that H0(z) ≥
1
2
τ̄ z2 − c̄, where τ̄ = a− c0 > α−j1

2
. Then we have that for z ∈ X−(L0),

L0(z) ≤ (α− c0)

∫ 2π

0

z2dt = −j1 − α

2

∫ 2π

0

z2dt,

ψ0(z) =

∫ 2π

0

H0(z)dt ≥ 1

2
τ̄

∫ 2π

0

z2dt− 2πc̄.

Thus we have

f(z) =
1

2
L0(z)− ψ0(z) ≤ (

α− j1

4
− 1

2
τ̄)

∫ 2π

0

z2dt + 2πc̄ < ∞.

Lemma 3.2. Assume that H satisfies the conditions (H1)-(H5). Then
the functional f satisfies (P.S.)c condition for every c ∈ R.

Proof. We shall use the finite dimensional reduction method. Let us
define

P0 =

∫ β

α

dEλ, P+ =

∫ +∞

β

dEλ, P− =

∫ α

−∞
dEλ,

where {Eλ} is the spectral resolution of the map:z(t) 7→ −J ˙z(t), and let

H0 = P0H, H± = P±H.

Let us define the finite dimensional reduction functional

f̃(z) =
1

2

∫ 2π

0

˙u(z)Ju(z)dt−
∫ 2π

0

H(u(z))dt,

where u(z) = z + u+(z) + u−(z), z ∈ H0, and u±(z) ∈ H±. Let us set
w = z + u−(z), Then we have

f̃(z) =
1

2

∫ 2π

0

ẇJwdt−
∫ 2π

0

H(w)dt

+{1

2
[

∫ 2π

0

˙u(z)Ju(z)dt−
∫ 2π

0

ẇJwdt]−
∫ 2π

0

[H(u(z))−H(w)]dt}.
We have that

1

2
[

∫ 2π

0

˙u(z)Ju(z)dt−
∫ 2π

0

ẇJwdt]−
∫ 2π

0

[H(u(z))−H(w)]dt

=
1

2

∫ 2π

0

˙u(z)Ju+dt−
∫ 2π

0

(Hz(su+ − w), u+)ds
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=

∫ 2π

0

∫ 2π

0

(d2
zH(su+ + w)u+, u+)sdsdt− 1

2

∫ 2π

0

u̇+Ju+ ≤ 0

by condition (H2). By condition (H3) and condition (H4), we have

f̃(z) ≤ 1

2

∫ 2π

0

ẇJwdt−
∫ 2π

0

H(w)dt

≤ 1

2
(2πjm − γ)‖w‖2 + C −→ −∞ as ‖z‖ → ∞

Thus the functional f̃ is bounded from below and satisfies the (P.S.)
condition, so the function f satisfies the (P.S.) condition.

Let c1 = jm+β
2

and let L1 : X → X be the linear operator such that

L1(z) = A(z)− c1

∫ 2π

0

z2dt. (3.4)

Then L1 is symmetric, bijective and equivariant. Let X−(L1) be the
negative space of L1 and X+(L1) be the positive space of L1. Then

X = X−(L1)⊕X+(L1).

Moreover, we have

∀z ∈ X−(L1) : L1(z) ≤ (jm − c1)

∫ 2π

0

z2dt, (3.5)

∀z ∈ X+(L1) : L1(z) ≥ {β − c1}
∫ 2π

0

z2dt.

Thus there exists d > 0 such that

L1(z) ≤ −d‖z‖2
X , ∀z ∈ X−(L1),

L1(z) ≥ d‖z‖2
X , ∀z ∈ X+(L1).

Hence

f(z) =
1

2
L1(z)− ψ1(z), (3.6)

where

ψ1(z) =

∫ 2π

0

[H(z)− 1

2
c1z

2]dt.

Since X is compactly embedded in L2(S1, R2n), the map Dψ1 : X → X
is compact.
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Lemma 3.3. Assume that H satisfies the conditions (H1)-(H5). Let

H1(z) = H(z)− 1

2
c1z

2

Then

inf
z∈X

H1(z)

1 + z2
> −∞, lim

|z|→0
inf

H1(z)

z2
≥ 0 (3.7)

and

lim
|z|→0
z∈X

inf

∫ 2π

0
H1(z)dt

‖z‖2
X

≥ 0. (3.8)

Proof. Let us take e, ē with

j2m < e < sup
z∈X\{0}

Hz(z) · z
|z|2 < ē < β. (3.9)

Then there exists h > 0 such that H1(z) ≥ 1
2
θz2−h, where θ = e− c1 >

j2m−β
2

. Thus H1(z)
1+z2 ≥ 1

2
θz2−h

1+z2 >
j2m−β

4
z2−h

1+z2 > −∞ because h > 0 and
j2m−β

4
z2 < 0. Next we will prove (3.8). Let

γ1(s) =

{
(H1(s)

s2 )− if |s| 6= 0,
0 if s = (0, . . . , 0).

Then γ1 : R2n → R is bounded, continuous, with γ1(0, . . . , 0) = 0 and
H1(s) ≥ −γ1(s)s

2. If (zn) is a sequence in X with zn → (0, . . . , 0), then,
up to a subsequence, zn → (0, . . . , 0) a.e. and wn = zn

‖zn‖X
is strongly

convergent in L2(S1). Since
∫ 2π

0
H1(zn)dt

‖zn‖2
X

≥ −
∫ 2π

0

γ1(zn)w2
ndt.

Thus lim |z|→0
z∈X

inf
∫ 2π
0 H1(z)dt

‖z‖2X
≥ 0. Thus we prove the lemma.

Let us set

Sr = {z ∈ X−(L1)| ‖z‖X = r}.
Lemma 3.4. Assume that H satisfies the conditions (H1)-(H5). Then

there exists a neighborhood Sr ⊂ X−(L1) of 0 with radius r > 0 such
that

sup
z∈Sr∩X−(L1)

f(z) < 0.
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Proof. From (3.6), we have

f(z) =
1

2
L1(z)−

∫ 2π

0

H1(z)(z)dt.

From (3.5), there exists d > 0 such that L1(z) ≤ −d‖z‖2
X , ∀z ∈ X−(L1).

By Lemma 3.3, lim |z|→0
z∈X

inf
∫ 2π
0 H1(z)dt

‖z‖2X
≥ 0.

f(z)

‖z‖2
X

≤ −d− lim
|z|→0
z∈X

inf

∫ 2π

0
H1(z)dt

‖z‖2
X

< 0.

If V = X−(L1), then

lim
|z|→0
z∈V

sup
f(z)

‖z‖2
X

< 0.

There exists r > 0 such that if z ∈ Sr ∩ V , then

sup
z∈Sr∩V

f(z) < 0.

Proof of Theorem 1.1
If we set V = X−(L1) and W = X+(L0), then V and W are closed
invariant subspaces of X with V +W = X, L(W ) ⊆ W , codim(V +W ) =
0 and Fix{Tθ} ⊂ V + W . By Proposition 2.2, f is C1(X,R1) and
by Lemma 3.2, f(z) satisfies the (P.S.)c condition for any c ∈ R. By
Lemma 3.1 and Lemma 3.4, assumption (d) of Theorem 2.1 is satisfied.
By Lemma 2.1, the condition (e) of Theorem 2.1 is satisfied. Thus by
Theorem 2.1, (1.2) has at least 1

2
dim(V ∩W ) = m nontrivial solutions.
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