• Title/Summary/Keyword: HLLC Scheme

Search Result 16, Processing Time 0.02 seconds

Development of Internal Ballistics Analysis Code using HLLC (HLLC를 사용한 내탄도 해석 코드 개발)

  • Yang, Sungmin;Cha, Seung-Won;Lee, Kang-Kyu;Roh, Tae-Seong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.778-780
    • /
    • 2017
  • In order to calculate the performance of the solid rocket motor, the internal ballistics analysis code using HLLC scheme has been developed. The result of applying the analysis code to the actual motor shape has been compared with the experimental results and it is confirmed that the performance of the solid rocket motor has been well calculated.

  • PDF

A Study on Simulation of Dam-break Wave Using Two-dimensional Finite Volume Model (2차원 유한체적모형을 이용한 댐 붕괴파 모의에 관한 연구)

  • Jeong, Woo-Chang;Park, Young-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.249-262
    • /
    • 2011
  • In this study, in order to reduce the numerical oscillation due to the unbalance between source and flux terms as the HLLC scheme is applied to the flow analysis on the irregular bed topography, a unstructured finite volume model based on the well-balanced HLLC scheme and the shallow water equations is developed and applied to problems of dam-break waves. The well-balanced HLLC scheme considers directly the gradient of bed topography as the flux terms is calculated. This scheme provides the good numerical balance between the source and flux terms in the case of the application to the steady-state transcritical flow. To verify the numerical model developed in this study, it is applied to three cases of hydraulic model experiments and a field case study of Mapasset dam failure (France). As a result of the verification, the predicted numerical results agree relatively well with available laboratory and field measurements. The model provides slightly more accurate results compared with the existing models.

A Numerical Analysis of a Discontinuous Flow with TVD Scheme (TVD기법을 이용한 불연속 흐름의 수치해석)

  • Jeon, Jeong-Sook;Lee, Bong-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.597-608
    • /
    • 2003
  • A transcritical flow occurs when the width and slope of a channel are varying abruptly. In this study, the transcritical flow in a two-dimensional open channel is analyzed by using the shallow-water equations. A weighted average flux scheme that has flux limiter with a total variation diminishing condition is introduced for a second-order accuracy in time and space, and non- spurious oscillations at discontinuous points. A HLLC method with three wane speeds is employed to calculate the Riemann problem. To overcome difficulties resulting from variation of channel sections in a two-dimensional analysis of transcritical flow, the numerical model is developed based on a generalized grid system.

A Numerical Study on Characteristics of Flood Wave Passing through Urban Areas (1) : Development and Verification of a Numerical Model (도시지역을 관통하는 홍수파의 특성에 관한 수치적 연구 (1) : 수치모형의 개발 및 검증)

  • Jeong, Woo-Chang;Lee, Jin-Woo;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.89-97
    • /
    • 2009
  • In this study, a two-dimensional unstructured finite volume model based on the shallow-water equations and well-balanced HLLC scheme is developed. The model is verified by applying to various one- and two-dimensional problems related to the analyses of dam-break wave. The predicted numerical results agree very well with available analytical solutions and laboratory measurements. The model provides slightly more accurate results compared with the existing models.

Development of TVD Numerical Models: II. Shallow-Water Equations (TVD 수치모형의 개발: II. 천수방정식)

  • Lee, Jong-Uk;Jo, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2001
  • In this study, a numerical model describing the shallow-water equations is newly developed by using a TVD scheme. The model has a second-order accuracy in time and space and is free from nonphysical oscillations, even in the vicinity of large gradients. Because a upwind based TVD scheme requires a Riemann solver, the HLLC scheme is employed in this model. To calibrate the applicability and accuracy, the developed model is used to simulate dam-break waves in an ideal channel and a sloshing flow n a paraboloidal basin. Agreements between numerical predictions and analytical solutions are very resonable.

  • PDF

Weighted Averaged Flux Method for Computation of Shallow Water Equations (WAF 기법을 이용한 천수방정식 해석)

  • Kim, Woo-Gu;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.777-785
    • /
    • 2003
  • A numerical model for the solution of two-dimensional free surface flow is developed on unstructured grid. By using fractional step method, the two-dimensional shallow water equations (SWE) are treated as two one-dimensional problems. Thus, it is possible to simulate computational hydraulic problems with higher computational efficiency. The one-dimensional problems are solved using upwind TVD version of second-order Weighted Averaged Flux (WAF) scheme with HLLC approximate Riemann solver. The numerical oscillations which are common with second-order numerical scheme are controlled by exploiting WAF flux limiter, Some idealized test problems are solved using this model and very accurate and stable solutions are obtained. It can be concluded as an efficient implement for the computation of SWE including dam break problems that concerning discontinuities, subcritical and supercritical flows and complex domain.

A Numerical Study on Characteristics of Flow in a Crossroad: Case of Crossroad Connected Symmetrically with Inclined Four Roads (도로 교차로에서의 흐름 특성에 관한 수치적 연구: 경사진 네 개의 도로가 대칭으로 연결된 교차로의 경우)

  • Jeong, Woo-Chang;Lee, Jin-Woo;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.99-108
    • /
    • 2010
  • In this study, the characteristics of flow within and around a crossroad connected symmetrically with four roads are numerically analyzed by using a two-dimensional well-balanced HLLC finite volume model. As results of simulations and analyses, the numerical model employed in this study describes relatively well the complex water surface in a crossroad according to the conditions of inflow and road slope. Moreover, the predicted temporal and spatial variations of water depths in a crossroad and outflows at two downstream boundaries agree relatively well with laboratory measurements.

An Application of the HLLL Approximate Riemann Solver to the Shallow Water Equations (천수방정식에 대한 HLLL 근사 Riemann 해법의 적용)

  • Hwang, Seung-Yong;Lee, Sam Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.21-27
    • /
    • 2012
  • The HLLL scheme, proposed by T. Linde, determines all the wave speeds from the initial states because the middle wave is evaluated by the introduction of a generalized entropy function. The scheme is considered a genuine successor to the original HLL scheme because it is completely separated form the Roe's linearization scheme unlike the HLLE scheme and does not rely on the exact solution unlike the HLLC scheme. In this study, a numerical model was configured by the HLLL scheme with the total energy as a generalized entropy function to solve governing equations, which are the one-dimensional shallow water equations without source terms and with an additional conserved variable relating a concentration. Despite the limitations of the first order solutions, results to three cases with the exact solutions were generally accurate. The HLLL scheme appeared to be superior in comparison with the other HLL-type schemes. In particular, the scheme gave fairly accurate results in capturing the front of wetting and drying. However, it revealed shortcomings of more time-consuming calculations compared to the other schemes.

DEVELOPMENT OF 2D DAM BREAK FLOW ANALYSIS MODEL USING FRACTIONAL STEP METHOD

  • Kim, Dae-hong;Kim, Woo-gu;Chae, Hyo-sok;Park, Sang-geun
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • A numerical model for the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

Development of a Numerical Model of Shallow-Water Flow using Cut-cell System (분할격자체계를 이용한 천수흐름 수치모형의 개발)

  • Kim, Hyung-Jun;Lee, Seung-Oh;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.91-100
    • /
    • 2008
  • Numerical implementation with a Cartesian cut-cell method is conducted in this study. A Cartesian cut-cell method is an easy and efficient mesh generation methodology for complex geometries. In this method, a background Cartesian grid is employed for most of computational domain and a cut-cell grid is applied for the peculiar grids where the flow characteristics are changed such as solid boundary to enhance the accuracy, applicability and efficiency. Accurate representation of complex geometries can be obtained by using the cut-cell method. The cut-cell grids are constructed with irregular meshes which have various shape and size. Therefore, the finite volume method is applied to numerical discretization on a irregular domain. The HLLC approximate Riemann solver, a Godunov-type finite volume method, is employed to discretize the advection terms in the governing equations. The weighted average flux method applied on the Cartesian cut cell grid for stabilization of the numerical results. To validate the numerical model using the Cartesian cut-cell grids, the model is applied to the rectangular tank problem of which the exact solutions exist. As a comparison of numerical results with the analytical solutions, the numerical scheme well represents flow characteristics such as free surface elevation and velocities in x-and y-directions in a rectangular tank with the Cartesian and cut-cell grids.