A Numerical Study on Characteristics of Flood Wave Passing through Urban Areas (1) : Development and Verification of a Numerical Model

도시지역을 관통하는 홍수파의 특성에 관한 수치적 연구 (1) : 수치모형의 개발 및 검증

  • 정우창 (경남대학교 공과대학 토목공학과) ;
  • 이진우 (한양대학교 대학원 건설환경공학과) ;
  • 조용식 (한양대학교 공과대학 건설환경공학과)
  • Published : 2009.12.31

Abstract

In this study, a two-dimensional unstructured finite volume model based on the shallow-water equations and well-balanced HLLC scheme is developed. The model is verified by applying to various one- and two-dimensional problems related to the analyses of dam-break wave. The predicted numerical results agree very well with available analytical solutions and laboratory measurements. The model provides slightly more accurate results compared with the existing models.

본 연구에서는 도시지역을 관통하는 댐 붕괴파의 전파특성을 모의하고 분석하기 위한 선행 작업으로 천수방정식과 well-balanced HLLC 기법에 근간을 둔 2차원 비구조적 유한체적모형을 개발하였다. 개발된 모형은 다양한 1차원과 2차원의 댐 붕괴파 해석과 관련된 문제에 대해 검증되었으며, 검증결과 해석해 및 수리모형실험을 통한 실측자료와 매우 일치하는 경향을 나타냈다. 본 연구에서 개발된 수치모형은 현장에서 그리고 수리모형실험을 통해 관측된 수위자료와 잘 일치하였으며, 기존의 모형으로부터 계산된 수위결과에 비해 비교적 보다 정확한 결과를 나타내었다.

Keywords

References

  1. 김대홍, 조용식 (2005) 불규칙 지형에 적용가능한 쌍곡선형 천수방정식을 위한 개선표면경사법. 대한토목학회논문집, 제25권, 제3B호, pp. 223-229
  2. 김대홍, 조용식 (2004) HLLC Approximate Riemann Solver를 이용한 천수방정식 해석. 한국수자원학회 논문집, 제37권, 제10호, pp. 845-855 https://doi.org/10.3741/JKWRA.2004.37.10.845
  3. 이길성, 이성태 (1998) 충격파 모의를 위한 이차원 유한체적 비정상 흐름 모형. 한국수자원학회 논문집, 제31권, 제3호, pp. 279-290
  4. 한건연, 김상호, 김병현, 최승용 (2006) 유한요소법에 의한 2차원 하천 흐름 모형의 개발, 한국수자원학회 학술발표 논문집, pp. 425-429
  5. Akanbi, A. A., and Katopodes, N. D. (1988) Model for flood propagation on initially dry land. Journal of Hydraulic Engineering, Vol. 114, No.7, pp. 689-706 https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(689)
  6. Alcrudo, F., and Garcia-Navarro, P. (1993) High-resolution Godunov-type scheme in finite volumes for the 2D shallowwater equations. International Journal for Numerical Methods in Fluid, Vol. 16, pp. 489-505 https://doi.org/10.1002/fld.1650160604
  7. Anastasiou, K., and Chan, C.T. (1997) Solution of the 2D shallow water equations using the finite volume method on unstructured triangular meshes. International Journal for Numerical Methods in Fluid, Vol. 16, pp. 489-505 https://doi.org/10.1002/(SICI)1097-0363(19970615)24:11<1225::AID-FLD540>3.0.CO;2-D
  8. Billet, S.J. and Toro, E.F. (1997) On WAF-type schemes for multidimensional hyperbolic conservation laws. Journal of Computational Physics, Vol. 130, No. 1, pp. 1-24 https://doi.org/10.1006/jcph.1996.5470
  9. Cho, Y.S. (1995) Numerical simulations of tsunami propagation and run-up. Ph.D. thesis, School of Civil and Environmental Engineering, Cornell University, Ithaca. pp. 1-250
  10. Dhatt, G., Soulaïmani, A., Ouellet, Y. and Fortin, M. (1986) Development of new triangular elements for free surface flows. International Journal for Numerical Methods in Fluid, Vol. 6, pp. 895-911 https://doi.org/10.1002/fld.1650061204
  11. Engquist, B. and Osher, S. (1981) One sided difference approximations for nonlinear conservation laws. Mathematics of Computation, 36(154), pp. 321-351 https://doi.org/10.2307/2007646
  12. Soares Frazao, S., Noel, B. and Zech, Y. (2004) Experiments of dam-break flow in the presence of obstacles. Proceedings of River Flow 2004 Conference, Naples, Italy, June 2004, Vol. 2, pp. 911-918
  13. Garcia, R. and Kahawitha, R. (1986) Numerical solution of the St. Venant equations with the MacCormack finite difference scheme. International Journal for Numerical Methods in Fluids, Vol. 6, pp. 507-527 https://doi.org/10.1002/fld.1650060803
  14. Glaister, P. (1991) Solution of a two-dimensional dam break problem. International Journal on Engineering Science, Vol. 29, No. 11, pp. 1357-1362 https://doi.org/10.1016/0020-7225(91)90041-Z
  15. Godunov, S. (1959) difference scheme for numerical computation of discontinuous solution of hydrodynamic equations. Math. Sbornik, Vol. 43, pp. 271-306
  16. Harten, A., Lax, P. and van Leer, A. (1983) On upstream differencing and Godunov-type scheme for hyperbolic conservation laws. Society for Industrial and Applied Mathematics, Review, Vol. 25, No. 1, pp. 35-61 https://doi.org/10.1137/1025002
  17. Kim, D.H., Cho, Y.S. and Kim, W.G. (2004) Weighted Averaged Flux-Type Scheme for Shallow-Water Equations with Fractional Step Method. Journal of Engineering Mechanics, Vol. 130, No. 2, pp. 152-160 https://doi.org/10.1061/(ASCE)0733-9399(2004)130:2(152)
  18. Kim, H.J. (2008) Numerical simulation of shallow-water flow using cut-cell system, Ph.D. thesis, Department of Civil Engineering, Hanyang University, Korea, pp. 1-142
  19. LeVeque, R.L. (1998) Balancing source terms and flux gradient in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. Journal of Computational Physics, Vol. 146, pp. 346-365 https://doi.org/10.1006/jcph.1998.6058
  20. LeVeque, R.L. and George, D.L. (2007) High-resolution finite volume methods for the shallow water equations with bathymetry and dry states. Advanced Numerical Models for Simulationg Tsunami Waves and Runup, Advanced in Coastal and Ocean Engineering, Vol. 10, pp. 1-31
  21. Loukili, Y. and Soula$\ddot{i}$mani, A. (2007) Numerical Tracking of Shallow Water Waves by the Unstructured Finite Volume WAF Approximation. International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 8, pp. 1-14 https://doi.org/10.1080/15502280601006140
  22. MacCormack, R.W. and Paullay, A.J. (1972) Computational efficiency achieved by time splitting of finite difference operators. American Institute of Aeronautics and Astronautics, Paper, pp. 52-64
  23. Osher, S. and Solomon, F. (1982) Upwind difference schemes for hyperbolic conservation laws. Mathematics of Computation, Vol. 38, No. 158, pp. 339-374 https://doi.org/10.2307/2007275
  24. Perthame, B. and Simeoni, C. (2001) A kinetic scheme for the Saint-Venant extended Kalman Filter for data assimilation in oceanography. Calcolo, Vol. 38, No. 4, pp. 201-231 https://doi.org/10.1007/s10092-001-8181-3
  25. Roe, P.L. (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43(2), pp. 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
  26. Shewchuk, J.R. (1996) Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. Lect. Notes Comput. Sci., 1148, pp. 203-222 https://doi.org/10.1007/BFb0014497
  27. Sleigh, P.A., Gaskell, P.H., Berzins, M. and Wright, N.G. (1998) An unstructured finite-volume algorithm for predicting flow in rivers and estuaries. Computational Fluids, Vol. 27, No. 4, pp. 479-508 https://doi.org/10.1016/S0045-7930(97)00071-6
  28. Steger, J.L. and Warming, R.F. (1981) Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods. Journal of Computational Physics, Vol. 40, pp. 263-293 https://doi.org/10.1016/0021-9991(81)90210-2
  29. Strang, G. (1968) On the construction and comparison of difference schemes. SIAM, Numerical Analysis, Vol. 5, pp. 506-517 https://doi.org/10.1137/0705041
  30. Toro, E.F. (2001) Shock-capturing methods for free-surface shallow flows, Wiley, New York
  31. Yoon, T.H. and Kang, S.K. (2004) Finite Volume Model for Two-Dimensional Shallow Water Flows on Unstructured Grids. Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 7, pp. 678-688 https://doi.org/10.1061/(ASCE)0733-9429(2004)130:7(678)
  32. Zhao, D., Shen, H., Lai, J. and Tabios, G. (1996) Approximate Riemann solvers in FVM for 2D hydraulic shock wave modelling. Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 12, pp. 692-702 https://doi.org/10.1061/(ASCE)0733-9429(1996)122:12(692)
  33. Zoppou, C. and Roberts, S. (2003) Explicit schemes for dam-break simulations. Journal of Hydraulic Engineering, ASCE, Vol. 129, No. 1, pp. 11-34 https://doi.org/10.1061/(ASCE)0733-9429(2003)129:1(11)