• Title/Summary/Keyword: HIFU transducer

Search Result 11, Processing Time 0.031 seconds

Finite element analysis for acoustic and temperature characteristics of a piezoelectric HIFU transducer at 10 MHz (10 MHz용 압전 HIFU 트랜스듀서의 음향 및 온도 특성에 대한 유한요소해석)

  • Jong-Ho Kim;Il-Gok Hong;Ho-Yong Shin;Hyo-Jun Ahn;Jong-In Im
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.3
    • /
    • pp.116-123
    • /
    • 2023
  • A high intensity focuses ultrasound (HIFU) is one of the emerging technologies in the biomedical field. The piezoelectric HIFU transducer is a device that utilizes the thermal energy generated by high ultrasound energy. Recently an operating frequency of the HIFU transducer is to expand above a 7 MHz. In this study, the acoustic pressures and temperature distributions in the tissue that generated by the HIFU transducer at 10 MHz were calculated with the finite element method. In addition, the pressure focusing characteristics of the device were analyzed. The geometrical variables are the piezomaterial thickness, lens shape, water height, and film thickness. The results shown that the acoustic pressure increased and saturated gradually when the height/radius (HL/RL) ratio of the lens increased. Moreover, the focal area was gradually decreases with HL/RL ratio of the lens. In case of the optimized HIFU transducer, the maximum pressure and temperature were analyzed about 19 MPa and 65℃ respectively. And the -3 dB focused distances in the axial and lateral direction are around 2.3 mm and 0.23 mm respectively.

High-intensity focused ultrasound beam path visualization using ultrasound imaging (초음파 영상을 이용한 고강도 집중 초음파 빔 시각화)

  • Song, Jae Hee;Chang, Jin Ho;Yoo, Yang Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • In High-Intensity Focused Ultrasound (HIFU) treatment, effective localization of HIFU focus is important for developing a safe treatment plan. While Magnetic Resonance Imaging guided HIFU (MRIgHIFU) can visualize the ultrasound path during the treatment for localizing HIFU focus, it is challenging in ultrasound imaging guided HIFU (USIgHIFU). In the present study, a real-time ultrasound beam visualization technique capable of localizing HIFU focus is presented for USIgHIFU. In the proposed method, a short pulse, with the same center frequency of an imaging ultrasound transducer below the regulated acoustic intensity (i.e., Ispta < 720 mW/㎠), was transmitted through a HIFU transducer whereupon backscattered signals were received by the imaging transducer. To visualize the HIFU beam path, the backscattered signals underwent dynamic receive focusing and subsequent echo processing. From in vitro experiments with bovine serum albumin gel phantoms, the HIFU beam path was clearly depicted with low acoustic intensity (i.e., Ispta of 94.8 mW/㎠) and the HIFU focus was successfully localized before any damages were produced. This result indicates that the proposed ultrasound beam path visualization method can be used for localizing the HIFU focus in real time while minimizing unwanted tissue damage in USIgHIFU treatment.

A Study on the Development of High-Intensity Focused Ultrasound Skin Treatment System Through Frequency Output Control Optimization (주파수 출력 제어 최적화를 통한 고강도 집속 초음파 피부치료 시스템 개발 연구)

  • Park, Jong-Cheol;Kim, Min-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1022-1037
    • /
    • 2022
  • It is important to develop a transducer that generates uniform output power through frequency control of the HIFU at 4 MHz frequency for the high intensity focused ultrasound (HIFU) skin diseases treatment. In this paper, a 4 MHz frequency band HIFU system for skin disease treatment was designed, manufactured and developed. In HIFU, even for the ultrasonic vibrator in the 4 MHz frequency band, the characteristics of the output power of the HIFU are different depending on the difference in the thickness of the PZT material. Through the development of a system amplifier, the sound output of the HIFU transducer was improved to more than 48 W and uniform output power control was possible. And, it is possible to control the output power even in a frequency band of 4.0 to 4.7 MHz, which is wider than 4.0 MHz, and shows the resonance frequency of the transducer. The maximum output power for each frequency was 49.969 W and the minimum value was 48.018 W. The maximum output power compared to the minimum output power is 49.969 W, which is uniform within 4.1%. It was confirmed that the output power of the HIFU through the amplifier can be uniformly controlled in the 4 MHz frequency band.

High Intensity Focused Ultrasound for Cancer Treatment: Current Agenda and the Latest Technology Trends (HIFU: 현황 및 기술적 동향)

  • Seo, Jong-Bum
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.2E
    • /
    • pp.55-63
    • /
    • 2010
  • High Intensity Focused Ultrasound (HIFU) is a noninvasive surgical method mainly targeting deeply located cancer tissue. Ultrasound is generated from an extemally located transducer and the beam is focused at the target volume, so that selective damage can be achieved without harm to overlying or surrounding tissues. The mechanism for cell killing can be combination of thermal and cavitational damage. Although cavitation can be an effective means of tissue destruction, the possibility of massive hemorrhage and the unpredictable nature of cavitational events prevent clinical application of cavitation. Hence, thermal damage has been a main focus related to HIFU research. 2D phased array transducer systems allow electronic scanning of focus, multi-foci, and anti-focus with multi-foci, so that HIFU becomes more applicable in clinical use. Currently, lack of noninvasive monitoring means of HIFU is the main factor to limit clinical applications, but development in MRI and Ultrasound Imaging techniques may be able to provide solutions to overcome this problem. With the development of advanced focusing algorithm and monitoring means, complete noninvasive surgery is expected to be implemented in the near future.

Simulation and Measurement of Thermal Ablation in a Tissue-Mimicking Phantom and Ex-Vivo Porcine Liver by Using High Intensity Focused Ultrasound

  • Lee, Kang Il
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1289-1294
    • /
    • 2018
  • The present study aims to investigate experimentally and theoretically thermal ablation in soft tissues by using high intensity focused ultrasound (HIFU) to assess tissue damage during HIFU thermotherapy. The HIFU field was calculated by solving the axisymmetric Khokhlov-Zabolotskaya-Kuznetsov equation from the frequency-domain perspective. The temperature field was calculated by solving Pennes' bioheat transfer equation, and the thermal dose required to create a thermal lesion was calculated by using the thermal dose formula based on the thermal dose of a 240-min exposure at $43^{\circ}C$. In order to validate the simulation results, we performed thermal ablation experiments in a tissue-mimicking phantom and ex-vivo porcine liver for two different HIFU source conditions by using a 1.1-MHz, single-element, spherically focused HIFU transducer. The small difference between the measured and the predicted lesion sizes suggests that the implementation of the numerical model used here should be modified to iteratively allow for temperature-dependent changes in the physical properties of tissues.

Infrared Thermal Imaging for Quantification of HIFU-induced Tissue Coagulation (적외선 이미징 기반 HIFU 응용 조직 응고 정량화 연구)

  • Pyo, Hanjae;Park, Suhyun;Kang, Hyun Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.236-240
    • /
    • 2017
  • In this paper, we investigate the thermal response of skin tissue to high-intensity focused ultrasound (HIFU) by means of infrared (IR) thermal imaging. For skin tightening, a 7-MHz ultrasound transducer is used to induce irreversible tissue coagulation in porcine skin. An IR camera is employed to monitor spatiotemporal changes of the temperature in the tissue. The maximum temperature in the tissue increased linearly with applied energy, up to $90^{\circ}C$. The extent of irreversible tissue coagulation (up to 3.2 mm in width) corresponds well to the spatial distribution of the temperature during HIFU sonication. Histological analysis confirms that the temperature beyond the coagulation threshold (${\sim}65^{\circ}C$) delineates the margin of collagen denaturation in the tissue. IR thermal imaging can be a feasible method for quantifying the degree of thermal coagulation in HIFU-induced skin treatment.

Ultrasonic Cavitation Effect Observation Using Bubble Cloud Image Analysis (기포군 영상분석을 통한 초음파 캐비테이션 현상의 변화 관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Kim, Jin-Su;Kang, Jung-Hoon;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.124-130
    • /
    • 2011
  • In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.

A study for implementation of ultrasonic transducer in the prostate cancer hyperthermia (전립선암의 온열치료를 위한 초음파변환기 개발에 관한 연구)

  • Park, Mun-Kyu;Noh, Si-Cheol;Park, Jae-Hyun;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.377-384
    • /
    • 2009
  • The ultrasonic hyperthermia for oncology has been developed and studied. The HIFU(high intensity focused ultrasound) is the most recent method to treat the tumor by using ultrasound. In this study, an insertion-type transducer for treating a prostate cancer, which can focus the ultrasonic beam mechanically and electrically, was designed and developed. The developed transducer was composed of three arrays, and each array has 32 elements. For the purpose of the mechanical focusing, both side arrays are slanted to the center array by $15^{\circ}$. With this structure, NFL(near field length) was set up as 30 mm. The PZT-4 and two matching layers were used, and the backing layer was excepted to prevent energy losses. The acoustic field analysis and the heating test were performed to evaluate the performance of developed transducer. The shape of an acoustic field, peak pressure, and acoustic pressure distribution were compared with numerical simulation. The NFL was 32 mm, the beam width was 5 mm, focal area was $40\;mm^2$, and peak pressure was 5.5 MPa. With heating by using developed transducer, the temperature increased up to $33^{\circ}C$ at focal zone. As a result of this study, the usefulness of suggested transducer for prostate cancer hyperthermia was confirmed by the acoustic field analysis and the heating test with TMM(tissue mimicking) phantom.

A Study on the Design and Fabrication of Fat Emulsification Adapted Focused Ultrasonic Transducer (지방 조직 유화를 위한 집속형 초음파 변환기 설계 및 제작에 관한 연구)

  • Kim, Ju-Young;Kim, Jae-Young;Jung, Hyun-Du;Noh, Si-Cheol;Mun, Chang-Su;Mun, Chi-Woong;Choi, Heung-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.127-134
    • /
    • 2015
  • Tissue stimulation technique using ultrasound has been continuously studied and developed. Recently, as a increment of interests for obesity treatment and cosmetic care, a various studies on ultrasonic fat emulsification has been conducted. In this study, the fat emulsification adapted ultrasonic transducer was designed. And using designed transducer, the simulation for the shape of focal area and thermal degradation region was conducted. The dimensions were verified by the simulation results. And the effectiveness was confirmed by evaluating measured radiation characteristic and heating characteristic. In addition, we estimated the ultrasonic heating characteristics in composite structure medium. The shape of focal point and heating characteristic of the proposed transducer were determined to be sufficient to emulsify the fat. The results of this study are considered to be used as basic research in more efficient and safe ultrasonic fat removal.

Mn-Modified PMN-PZT [Pb(Mg1/3Nb2/3)O3-Pb(Zr,Ti)O3] Single Crystals for High Power Piezoelectric Transducers

  • Oh, Hyun-Taek;Lee, Jong-Yeb;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.2
    • /
    • pp.150-157
    • /
    • 2017
  • Three types of piezoelectric single crystals [PMN-PT (Generation I $[Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3]$), PMN-PZT (Generation II $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$), PMN-PZT-Mn (Generation III)] were grown by the solid-state single crystal growth (SSCG) method, and their dielectric and piezoelectric properties were measured and compared. Compared to (001) PMN-PT and PMN-PZT single crystals, the (001) PMN-PZT-Mn single crystals exhibited a higher transition temperature between the rhombohedral and tetragonal phases ($T_{RT}=144^{\circ}C$), as well as a higher coercive electric field ($E_C=6.3kV/cm$) and internal bias field ($E_I=1.6kV/cm$). The (011) PMN-PZT-Mn single crystals showed the highest coercive electric field ($E_C=7.0kV/cm$), and the highest stability of $E_C$ and $E_I$ during 60 cycles of polarization measurement. These results demonstrate that both Mn doping (for higher electromechanical quality factor ($Q_m$)) and a (011) crystallographic orientation (for higher coercive electric field and stability) are necessary for high power transducer applications of these piezoelectric single crystals. Specifically, the (011) PMN-PZT-Mn single crystal (Gen. III) had the highest potential for application in the fields of SONAR transducers, high intensity focused ultrasound (HIFU), ultrasonic motors, and others.