• 제목/요약/키워드: HCF(High Cycle Fatigue)

검색결과 18건 처리시간 0.021초

고주기 피로 모델을 이용한 타원 접촉시 피로 수명에 관한 연구 (A Study on Fatigue Life under Elliptical Contact using High Cycle Fatigue Models)

  • 조용주;김태완;구영필
    • Tribology and Lubricants
    • /
    • 제20권5호
    • /
    • pp.252-258
    • /
    • 2004
  • In this study, using high cycle fatigue (HCF) criteria, the simulation of rolling contact fatigue is conducted under elliptical contact. The HCF criteria fall into three categories: the critical plane approach, the stress invariant approach and the approach based on the mesoscopic scale. The accurate calculation of contact stresses and subsurface stresses is essential to the prediction of crack initiation life. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when the friction coefficient exceeds a specific value for all of three fatigue criteria.

Effects of Grain Size on the Fatigue Properties in Cold-Expanded Austenitic HNSs

  • Shin, Jong-Ho;Kim, Young-Deak;Lee, Jong-Wook
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1412-1421
    • /
    • 2018
  • Cold-expanded austenitic high nitrogen steel (HNS) was subjected to investigate the effects of grain size on the stress-controlled high cycle fatigue (HCF) as well as the strain-controlled low cycle fatigue (LCF) properties. The austenitic HNSs with two different grain sizes (160 and $292{\mu}m$) were fabricated by the different hot forging strain. The fine-grained (FG) specimen exhibited longer LCF life and higher HCF limit than those of the coarse-grained (CG) specimen. Fatigue crack growth testing showed that crack propagation rate in the FG specimen was the same as that in the CG specimen, implying that crack propagation rate did not affect the discrepancy of LCF life and HCF limit between two cold-expanded HNSs. Therefore, it was estimated that superior LCF and HCF properties in the FG specimen resulted from the retardation of the fatigue crack initiation as compared with the CG specimen. Transmission electron microscopy showed that the effective grain size including twin boundaries are much finer in the FG specimen than that in the CG specimen, which can give favorable contributions to strengthening.

미세조직적 인자가 밀소둔된 Ti-6Al-4V 합금의 피로 및 피로균열전파 거동에 미치는 영향 (Effect of Microstructural Factors on Fatigue and Fatigue Crack Propagation Behaviors of Mill-Annealed Ti-6Al-4V Alloy)

  • 박상후;김수민;이다은;안수진;김상식
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.845-853
    • /
    • 2018
  • To understand the effect of microstructural factors (i.e., the size of ${\alpha}$ phase, equiaxed vs bimodal structure) on high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of mill-annealed Ti-6Al-4V (Ti64) alloy, three specimens of EQ (equiaxed)-8 (8 indicates the size of ${\alpha}$ grain), BM (bimodal)-8, and BM-16 were studied. The uniaxial HCF and FCP tests were conducted at an R ratio of 0.1 under sinusoidal fatigue loading. The microstructural influence (i.e., EQ vs BM) was not significant on the tensile properties of mill-annealed Ti64 alloy, and showed an increase in tensile strength and elongation with decreasing gauge thickness from 50 mm to 1.3 mm. The microstructure, on the other hand, affected the resistance to HCF substantially. It was found that the EQ structure in mill-annealed Ti64 has better resistance to HCF than the BM structure, as a result of different crack initiation mechanism. Unlike HCF behavior, the effect of microstructural features on the FCP behavior of mill-annealed Ti64 was not significant. Among the three specimens, BM-16 specimen showed the highest near-threshold ΔK value, probably because it had the greatest slip reversibility with large ${\alpha}$ grains. The effect of microstructural factors on the HCF and FCP behaviors of mill-annealed Ti64 alloy are discussed based on fractographic and micrographic observations.

자동차휠용 A356 알루미늄 합금의 주조조직이 피로특성에 미치는 영향 (Effect of Cast Microstructure on Fatigue Behaviors of A356 Aluminum Alloy for Automotive Wheel)

  • 송전영;박중철;안용식
    • 한국주조공학회지
    • /
    • 제30권1호
    • /
    • pp.46-51
    • /
    • 2010
  • Recently, automotive industry is attempting to replace steels for automotive parts with light-weight alloys such as aluminum alloy, because of the growing environmental regulations governing exhaust gas and the engine effectiveness of a vehicle. The low cycle fatigue (LCF) and high cycle fatigue (HCF) properties as well as the microstructure and tensile property were investigated on the low pressure cast A356 aluminum alloy wheel, which was followed by T6 heat treatment. The cast microstructure of the alloy influenced significantly on the low cycle and high cycle fatigue behaviors. The rim part of cast aluminum alloy wheel showed higher low cycle and high cycle fatigue strength compared with the spoke part, which should be caused by higher cooling rate of rim part. The spoke part of the wheel showed coarser dendrite arm spacing (DAS) and wide eutectic zone in the microstructure, which resulted in the partial brittle fracture and lower fatigue life time.

SCMH2 고속회전축재의 표면처리조건에 따른 VHCF 피로특성에 관한 연구 (VHCF Characteristics of SCMH2 Steel Depending on the Surface Treatment Conditions)

  • 서창민;서창희;서민수
    • Journal of Welding and Joining
    • /
    • 제31권4호
    • /
    • pp.47-53
    • /
    • 2013
  • SCMH2 steel is widely used in the industrial members of car and tractor. This study focused on material properties and evaluation technology of the SCMH2 steel regarding the surface treatment followed by carburizing and nitriding, by means of impact test, hardness test. and fatigue test including HCF (high cycle fatigue) and VHCF (very high cycle fatigue). Drop weight impact tester (Instron, 9250 Hv) and Cantilever type rotating-bending fatigue tester (YRB200, 3150 rpm) were used to characterize the SCMH2 standard specimen before and after carburizing/nitriding. In order to understand those effects on fatigue characteristics and material properties, the fractured surfaces were carefully observed and analyzed by SEM (scanning electron microscope) and EDS (energy-dispersive X-ray spectroscopy).

디퓨저 베인에 의한 공진조건에서의 임펠러 구조 안정성 평가 (Structural Stability Evaluation of Impeller in Resonant condition due to Diffuser vanes)

  • 김용세;공동재;신상준;임강수;박기훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.877-880
    • /
    • 2017
  • 원심압축기 임펠러의 블레이드는 고속회전과 정상유동 압력에 의한 정적하중이 가해진다. 동시에 임펠러와 디퓨저 베인 간 상호작용에 의해 발생하는 비정상 유동의 공력가진력이 공진조건에서 주기적으로 임펠러를 가진함에 따라 임펠러 블레이드의 고주기피로 파손이 발생할 수 있다. 이에 대한 정밀한 구조응답 예측을 위해 ANSYS를 이용한 비정상 유동 해석과 모드해석을 각기 수행하여 공력가진력과 주요 공진조건을 도출하였다. 이 후 공력-구조를 연계하는 단일방향의 강제진동 해석을 수행하고, 결과들을 토대로 고주기피로에 대한 안전도를 평가하였다.

  • PDF

대형디젤엔진의 열적 피로안전도 분석을 위한 유한요소해석 (Finite Element Analysis of Thermal Fatigue Safety for a Heavy-Duty Diesel Engine)

  • 조남효;이상업;이상규;이상헌
    • 한국자동차공학회논문집
    • /
    • 제12권1호
    • /
    • pp.122-129
    • /
    • 2004
  • Finite element analysis was performed to analyze structural safety of a new heavy-duty direct injection diesel engine. A half section of the in-line 6-cylinder engine was selected as a computational domain. A mapping method was used to project heat transfer coefficients from CFD results of engine coolant flow onto the FE model. The accurate setting of thermal boundary condition on the FE model was expected to result in improved prediction of temperature, cylinder bore distortion, and stresses. Characteristics of high cycle fatigue were investigated by assuming the engine was operated under the following five loading conditions repeatedly; assembly force, assembly force with thermal loading, alternating maximum gas pressure loading at each cylinder combined with assembly force and thermal loading. Distribution of fatigue safety factor was calculated by using it Haigh diagram in which the maximum and the minimum stresses were selected from the five loading cases.

고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가 (Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids)

  • 이두영;정진성;김영대;방지예
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

공기 가진력에 의한 팬 블레이드 구조 안정성 평가에 관한 연구 (A study on the Structural Stability about the Fan Blade by the Air Excited Forces.)

  • 정규강;김경희;조생현
    • 한국추진공학회지
    • /
    • 제4권1호
    • /
    • pp.93-101
    • /
    • 2000
  • 엔진 운용 중에 유로(flow Path)에 놓여 있는 팬 블레이드(blade)들은 많은 외부하중에 노출되어 있어서 고주기 피로(high cycle fatigue)에 의한 피로 파괴의 위험성이 크다. 그 중 가장 중요하게 평가되는 것이 주기적인 가진력에 의한 공진 현상과 그에 따른 피로파괴 가능성이다. 본 논문에서는 유동장 (flow field)이 지주(struts)에 의해 영향을 받게 되고, 이러한 유동장의 분포가 지주 후방에서 주기함수 형태로 팬 블레이드를 가진 할 때, 팬 블레이드에서의 진동 응답 특성과 구조적인 안정성을 평가하였다. 팬 블레이드의 피로강도를 시험적으로 평가하고, 팬 블레이드 전방 지주에 의한 공기 가진력을 가정하여 유한 요소 해석을 통한 구조적 안정성을 평가하였다. 그리고 엔진 시험에서 측정된 서지 압력 하중을 팬 블레이드의 유한요소 모델에 적용하여 구조적 영향을 평가함으로써 팬 블레이드의 구조적인 안정성을 확인하였다.

  • PDF

Reliability-based combined high and low cycle fatigue analysis of turbine blade using adaptive least squares support vector machines

  • Ma, Juan;Yue, Peng;Du, Wenyi;Dai, Changping;Wriggers, Peter
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.293-304
    • /
    • 2022
  • In this work, a novel reliability approach for combined high and low cycle fatigue (CCF) estimation is developed by combining active learning strategy with least squares support vector machines (LS-SVM) (named as ALS-SVM) surrogate model to address the multi-resources uncertainties, including working loads, material properties and model itself. Initially, a new active learner function combining LS-SVM approach with Monte Carlo simulation (MCS) is presented to improve computational efficiency with fewer calls to the performance function. To consider the uncertainty of surrogate model at candidate sample points, the learning function employs k-fold cross validation method and introduces the predicted variance to sequentially select sampling. Following that, low cycle fatigue (LCF) loads and high cycle fatigue (HCF) loads are firstly estimated based on the training samples extracted from finite element (FE) simulations, and their simulated responses together with the sample points of model parameters in Coffin-Manson formula are selected as the MC samples to establish ALS-SVM model. In this analysis, the MC samples are substituted to predict the CCF reliability of turbine blades by using the built ALS-SVM model. Through the comparison of the two approaches, it is indicated that the reliability model by linear cumulative damage rule provides a non-conservative result compared with that by the proposed one. In addition, the results demonstrate that ALS-SVM is an effective analysis method holding high computational efficiency with small training samples to gain accurate fatigue reliability.